Part Segmentation and Motion Estimation for Articulated Objects with Dynamic 3D Gaussians
- URL: http://arxiv.org/abs/2506.22718v2
- Date: Thu, 07 Aug 2025 05:03:15 GMT
- Title: Part Segmentation and Motion Estimation for Articulated Objects with Dynamic 3D Gaussians
- Authors: Jun-Jee Chao, Qingyuan Jiang, Volkan Isler,
- Abstract summary: Part segmentation and motion estimation are fundamental problems for articulated object motion analysis.<n>We present a method to solve these problems jointly from a sequence of observed point clouds of a single articulated object.
- Score: 25.737629732255556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Part segmentation and motion estimation are two fundamental problems for articulated object motion analysis. In this paper, we present a method to solve these two problems jointly from a sequence of observed point clouds of a single articulated object. The main challenge in our problem setting is that the point clouds are not assumed to be generated by a fixed set of moving points. Instead, each point cloud in the sequence could be an arbitrary sampling of the object surface at that particular time step. Such scenarios occur when the object undergoes major occlusions, or if the dataset is collected using measurements from multiple sensors asynchronously. In these scenarios, methods that rely on tracking point correspondences are not appropriate. We present an alternative approach based on a compact but effective representation where we represent the object as a collection of simple building blocks modeled as 3D Gaussians. We parameterize the Gaussians with time-dependent rotations, translations, and scales that are shared across all time steps. With our representation, part segmentation can be achieved by building correspondences between the observed points and the Gaussians. Moreover, the transformation of each point across time can be obtained by following the poses of the assigned Gaussian (even when the point is not observed). Experiments show that our method outperforms existing methods that solely rely on finding point correspondences. Additionally, we extend existing datasets to emulate real-world scenarios by considering viewpoint occlusions. We further demonstrate that our method is more robust to missing points as compared to existing approaches on these challenging datasets, even when some parts are completely occluded in some time-steps. Notably, our part segmentation performance outperforms the state-of-the-art method by 13% on point clouds with occlusions.
Related papers
- You Only Estimate Once: Unified, One-stage, Real-Time Category-level Articulated Object 6D Pose Estimation for Robotic Grasping [119.41166438439313]
YOEO is a single-stage method that outputs instance segmentation and NPCS representations in an end-to-end manner.<n>We use a unified network to generate point-wise semantic labels and centroid offsets, allowing points from the same part instance to vote for the same centroid.<n>We also deploy our synthetically-trained model in a real-world setting, providing real-time visual feedback at 200Hz.
arXiv Detail & Related papers (2025-06-06T03:49:20Z) - Local Occupancy-Enhanced Object Grasping with Multiple Triplanar Projection [24.00828999360765]
This paper addresses the challenge of robotic grasping of general objects.
The proposed model first runs by proposing a number of most likely grasp points in the scene.
Around each grasp point, a module is designed to infer any voxel in its neighborhood to be either void or occupied by some object.
The model further estimates 6-DoF grasp poses utilizing the local occupancy-enhanced object shape information.
arXiv Detail & Related papers (2024-07-22T16:22:28Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation.
The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects.
Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets.
arXiv Detail & Related papers (2023-06-07T17:57:45Z) - OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point
Clouds [4.709764624933227]
We propose the first unsupervised method, called OGC, to simultaneously identify multiple 3D objects in a single forward pass.
We extensively evaluate our method on five datasets, demonstrating the superior performance for object part instance segmentation.
arXiv Detail & Related papers (2022-10-10T07:01:08Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Deep Confidence Guided Distance for 3D Partial Shape Registration [14.315501760755609]
We present a novel non-iterative learnable method for partial-to-partial 3D shape registration.
We present Confidence Guided Distance Network (CGD-net), where we fuse learnable similarity between point embeddings and spatial distance between point clouds.
arXiv Detail & Related papers (2022-01-27T08:40:05Z) - GPCO: An Unsupervised Green Point Cloud Odometry Method [64.86292006892093]
A lightweight point cloud odometry solution is proposed and named the green point cloud odometry (GPCO) method.
GPCO is an unsupervised learning method that predicts object motion by matching features of consecutive point cloud scans.
It is observed that GPCO outperforms benchmarking deep learning methods in accuracy while it has a significantly smaller model size and less training time.
arXiv Detail & Related papers (2021-12-08T00:24:03Z) - 3D Object Classification on Partial Point Clouds: A Practical
Perspective [91.81377258830703]
A point cloud is a popular shape representation adopted in 3D object classification.
This paper introduces a practical setting to classify partial point clouds of object instances under any poses.
A novel algorithm in an alignment-classification manner is proposed in this paper.
arXiv Detail & Related papers (2020-12-18T04:00:56Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.