Kill Two Birds with One Stone! Trajectory enabled Unified Online Detection of Adversarial Examples and Backdoor Attacks
- URL: http://arxiv.org/abs/2506.22722v1
- Date: Sat, 28 Jun 2025 02:06:23 GMT
- Title: Kill Two Birds with One Stone! Trajectory enabled Unified Online Detection of Adversarial Examples and Backdoor Attacks
- Authors: Anmin Fu, Fanyu Meng, Huaibing Peng, Hua Ma, Zhi Zhang, Yifeng Zheng, Willy Susilo, Yansong Gao,
- Abstract summary: The proposed UniGuard is the first unified online detection framework capable of simultaneously addressing adversarial examples and backdoor attacks.<n>UniGuard builds upon two key insights: first, both AE and backdoor attacks have to compromise the inference phase, making it possible to tackle them simultaneously during run-time via online detection.
- Score: 25.725726346383322
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The proposed UniGuard is the first unified online detection framework capable of simultaneously addressing adversarial examples and backdoor attacks. UniGuard builds upon two key insights: first, both AE and backdoor attacks have to compromise the inference phase, making it possible to tackle them simultaneously during run-time via online detection. Second, an adversarial input, whether a perturbed sample in AE attacks or a trigger-carrying sample in backdoor attacks, exhibits distinctive trajectory signatures from a benign sample as it propagates through the layers of a DL model in forward inference. The propagation trajectory of the adversarial sample must deviate from that of its benign counterpart; otherwise, the adversarial objective cannot be fulfilled. Detecting these trajectory signatures is inherently challenging due to their subtlety; UniGuard overcomes this by treating the propagation trajectory as a time-series signal, leveraging LSTM and spectrum transformation to amplify differences between adversarial and benign trajectories that are subtle in the time domain. UniGuard exceptional efficiency and effectiveness have been extensively validated across various modalities (image, text, and audio) and tasks (classification and regression), ranging from diverse model architectures against a wide range of AE attacks and backdoor attacks, including challenging partial backdoors and dynamic triggers. When compared to SOTA methods, including ContraNet (NDSS 22) specific for AE detection and TED (IEEE SP 24) specific for backdoor detection, UniGuard consistently demonstrates superior performance, even when matched against each method's strengths in addressing their respective threats-each SOTA fails to parts of attack strategies while UniGuard succeeds for all.
Related papers
- Iron Sharpens Iron: Defending Against Attacks in Machine-Generated Text Detection with Adversarial Training [13.239171999837287]
We introduce an adversarial framework for training a robust MGT detector, named GREedy Adversary PromoTed DefendER (GREATER)<n>Our experimental results across 10 text perturbation strategies and 6 adversarial attacks show that our GREATER-D reduces the Attack Success Rate (ASR) by 0.67% compared with SOTA defense methods.
arXiv Detail & Related papers (2025-02-18T10:48:53Z) - Towards Unified Robustness Against Both Backdoor and Adversarial Attacks [31.846262387360767]
Deep Neural Networks (DNNs) are known to be vulnerable to both backdoor and adversarial attacks.
This paper reveals that there is an intriguing connection between backdoor and adversarial attacks.
A novel Progressive Unified Defense algorithm is proposed to defend against backdoor and adversarial attacks simultaneously.
arXiv Detail & Related papers (2024-05-28T07:50:00Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
We show how contrastive backdoor attacks operate through distinctive mechanisms.
Our findings highlight the need for defenses tailored to the specificities of contrastive backdoor attacks.
arXiv Detail & Related papers (2023-12-14T15:54:52Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Temporal-Distributed Backdoor Attack Against Video Based Action
Recognition [21.916002204426853]
We introduce a simple yet effective backdoor attack against video data.
Our proposed attack, adding perturbations in a transformed domain, plants an imperceptible, temporally distributed trigger across the video frames.
arXiv Detail & Related papers (2023-08-21T22:31:54Z) - Contributor-Aware Defenses Against Adversarial Backdoor Attacks [2.830541450812474]
adversarial backdoor attacks have demonstrated the capability to perform targeted misclassification of specific examples.
We propose a contributor-aware universal defensive framework for learning in the presence of multiple, potentially adversarial data sources.
Our empirical studies demonstrate the robustness of the proposed framework against adversarial backdoor attacks from multiple simultaneous adversaries.
arXiv Detail & Related papers (2022-05-28T20:25:34Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
Adversarial attacks pose safety and security concerns for deep learning applications.
We construct Adrial Response Characteristics (ARC) features to reflect the model's gradient consistency.
Our method is intuitive, light-weighted, non-intrusive, and data-undemanding.
arXiv Detail & Related papers (2022-05-19T14:26:50Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.