Iron Sharpens Iron: Defending Against Attacks in Machine-Generated Text Detection with Adversarial Training
- URL: http://arxiv.org/abs/2502.12734v2
- Date: Wed, 30 Apr 2025 00:44:22 GMT
- Title: Iron Sharpens Iron: Defending Against Attacks in Machine-Generated Text Detection with Adversarial Training
- Authors: Yuanfan Li, Zhaohan Zhang, Chengzhengxu Li, Chao Shen, Xiaoming Liu,
- Abstract summary: We introduce an adversarial framework for training a robust MGT detector, named GREedy Adversary PromoTed DefendER (GREATER)<n>Our experimental results across 10 text perturbation strategies and 6 adversarial attacks show that our GREATER-D reduces the Attack Success Rate (ASR) by 0.67% compared with SOTA defense methods.
- Score: 13.239171999837287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-generated Text (MGT) detection is crucial for regulating and attributing online texts. While the existing MGT detectors achieve strong performance, they remain vulnerable to simple perturbations and adversarial attacks. To build an effective defense against malicious perturbations, we view MGT detection from a threat modeling perspective, that is, analyzing the model's vulnerability from an adversary's point of view and exploring effective mitigations. To this end, we introduce an adversarial framework for training a robust MGT detector, named GREedy Adversary PromoTed DefendER (GREATER). The GREATER consists of two key components: an adversary GREATER-A and a detector GREATER-D. The GREATER-D learns to defend against the adversarial attack from GREATER-A and generalizes the defense to other attacks. GREATER-A identifies and perturbs the critical tokens in embedding space, along with greedy search and pruning to generate stealthy and disruptive adversarial examples. Besides, we update the GREATER-A and GREATER-D synchronously, encouraging the GREATER-D to generalize its defense to different attacks and varying attack intensities. Our experimental results across 10 text perturbation strategies and 6 adversarial attacks show that our GREATER-D reduces the Attack Success Rate (ASR) by 0.67% compared with SOTA defense methods while our GREATER-A is demonstrated to be more effective and efficient than SOTA attack approaches. Codes and dataset are available in https://github.com/Liyuuuu111/GREATER.
Related papers
- Mind the Gap: Detecting Black-box Adversarial Attacks in the Making through Query Update Analysis [3.795071937009966]
Adrial attacks can jeopardize the integrity of Machine Learning (ML) models.
We propose a framework that detects if an adversarial noise instance is being generated.
We evaluate our approach against 8 state-of-the-art attacks, including adaptive attacks.
arXiv Detail & Related papers (2025-03-04T20:25:12Z) - Slot: Provenance-Driven APT Detection through Graph Reinforcement Learning [24.84110719035862]
Advanced Persistent Threats (APTs) represent sophisticated cyberattacks characterized by their ability to remain undetected for extended periods.<n>We propose Slot, an advanced APT detection approach based on provenance graphs and graph reinforcement learning.<n>We show Slot's outstanding accuracy, efficiency, adaptability, and robustness in APT detection, with most metrics surpassing state-of-the-art methods.
arXiv Detail & Related papers (2024-10-23T14:28:32Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Effectiveness of Moving Target Defenses for Adversarial Attacks in
ML-based Malware Detection [0.0]
Moving target defenses (MTDs) to counter adversarial ML attacks have been proposed in recent years.
We study for the first time the effectiveness of several recent MTDs for adversarial ML attacks applied to the malware detection domain.
We show that transferability and query attack strategies can achieve high levels of evasion against these defenses.
arXiv Detail & Related papers (2023-02-01T16:03:34Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Game Theoretic Mixed Experts for Combinational Adversarial Machine
Learning [10.368343314144553]
We provide a game-theoretic framework for ensemble adversarial attacks and defenses.
We propose three new attack algorithms, specifically designed to target defenses with randomized transformations, multi-model voting schemes, and adversarial detector architectures.
arXiv Detail & Related papers (2022-11-26T21:35:01Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
In this paper we propose two extensions of the PGD-attack overcoming failures due to suboptimal step size and problems of the objective function.
We then combine our novel attacks with two complementary existing ones to form a parameter-free, computationally affordable and user-independent ensemble of attacks to test adversarial robustness.
arXiv Detail & Related papers (2020-03-03T18:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.