Doubly robust estimation of causal effects for random object outcomes with continuous treatments
- URL: http://arxiv.org/abs/2506.22754v1
- Date: Sat, 28 Jun 2025 04:55:12 GMT
- Title: Doubly robust estimation of causal effects for random object outcomes with continuous treatments
- Authors: Satarupa Bhattacharjee, Bing Li, Xiao Wu, Lingzhou Xue,
- Abstract summary: Causal inference is central to statistics and scientific discovery.<n>Modern applications increasingly involve complex, non-Euclidean data structures.<n>This paper introduces a novel framework for causal inference with continuous treatments applied to non-Euclidean data.
- Score: 8.874402662101234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference is central to statistics and scientific discovery, enabling researchers to identify cause-and-effect relationships beyond associations. While traditionally studied within Euclidean spaces, contemporary applications increasingly involve complex, non-Euclidean data structures that reside in abstract metric spaces, known as random objects, such as images, shapes, networks, and distributions. This paper introduces a novel framework for causal inference with continuous treatments applied to non-Euclidean data. To address the challenges posed by the lack of linear structures, we leverage Hilbert space embeddings of the metric spaces to facilitate Fr\'echet mean estimation and causal effect mapping. Motivated by a study on the impact of exposure to fine particulate matter on age-at-death distributions across U.S. counties, we propose a nonparametric, doubly-debiased causal inference approach for outcomes as random objects with continuous treatments. Our framework can accommodate moderately high-dimensional vector-valued confounders and derive efficient influence functions for estimation to ensure both robustness and interpretability. We establish rigorous asymptotic properties of the cross-fitted estimators and employ conformal inference techniques for counterfactual outcome prediction. Validated through numerical experiments and applied to real-world environmental data, our framework extends causal inference methodologies to complex data structures, broadening its applicability across scientific disciplines.
Related papers
- Do-PFN: In-Context Learning for Causal Effect Estimation [75.62771416172109]
We show that Prior-data fitted networks (PFNs) can be pre-trained on synthetic data to predict outcomes.<n>Our approach allows for the accurate estimation of causal effects without knowledge of the underlying causal graph.
arXiv Detail & Related papers (2025-06-06T12:43:57Z) - Data Fusion for Partial Identification of Causal Effects [62.56890808004615]
We propose a novel partial identification framework that enables researchers to answer key questions.<n>Is the causal effect positive or negative? and How severe must assumption violations be to overturn this conclusion?<n>We apply our framework to the Project STAR study, which investigates the effect of classroom size on students' third-grade standardized test performance.
arXiv Detail & Related papers (2025-05-30T07:13:01Z) - Kernel-based estimators for functional causal effects [1.6749379740049928]
We propose causal effect estimators based on empirical Fr'echet means and operator-valued kernels, tailored to functional data spaces.<n>These methods address the challenges of high-dimensionality, sequential ordering, and model complexity while preserving robustness to treatment misspecification.
arXiv Detail & Related papers (2025-03-06T22:48:55Z) - An Overview of Causal Inference using Kernel Embeddings [14.298666697532838]
Kernel embeddings have emerged as a powerful tool for representing probability measures in a variety of statistical inference problems.
Main challenges include identifying causal associations and estimating the average treatment effect from observational data.
arXiv Detail & Related papers (2024-10-30T07:23:34Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust prediction methods.
We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization.
We propose a general framework for distributional robustness with respect to intervention-induced distributions.
arXiv Detail & Related papers (2021-10-04T13:12:11Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.