Causality and Generalizability: Identifiability and Learning Methods
- URL: http://arxiv.org/abs/2110.01430v1
- Date: Mon, 4 Oct 2021 13:12:11 GMT
- Title: Causality and Generalizability: Identifiability and Learning Methods
- Authors: Martin Emil Jakobsen
- Abstract summary: This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust prediction methods.
We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization.
We propose a general framework for distributional robustness with respect to intervention-induced distributions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This PhD thesis contains several contributions to the field of statistical
causal modeling. Statistical causal models are statistical models embedded with
causal assumptions that allow for the inference and reasoning about the
behavior of stochastic systems affected by external manipulation
(interventions). This thesis contributes to the research areas concerning the
estimation of causal effects, causal structure learning, and distributionally
robust (out-of-distribution generalizing) prediction methods. We present novel
and consistent linear and non-linear causal effects estimators in instrumental
variable settings that employ data-dependent mean squared prediction error
regularization. Our proposed estimators show, in certain settings, mean squared
error improvements compared to both canonical and state-of-the-art estimators.
We show that recent research on distributionally robust prediction methods has
connections to well-studied estimators from econometrics. This connection leads
us to prove that general K-class estimators possess distributional robustness
properties. We, furthermore, propose a general framework for distributional
robustness with respect to intervention-induced distributions. In this
framework, we derive sufficient conditions for the identifiability of
distributionally robust prediction methods and present impossibility results
that show the necessity of several of these conditions. We present a new
structure learning method applicable in additive noise models with directed
trees as causal graphs. We prove consistency in a vanishing identifiability
setup and provide a method for testing substructure hypotheses with asymptotic
family-wise error control that remains valid post-selection. Finally, we
present heuristic ideas for learning summary graphs of nonlinear time-series
models.
Related papers
- Ensemble Prediction via Covariate-dependent Stacking [0.0]
This study proposes a novel approach to ensemble prediction, called co-dependent stacking'' (CDST)
Unlike traditional stacking methods, CDST allows model weights to vary flexibly as a function of covariates, thereby enhancing predictive performance in complex scenarios.
Our findings suggest that the CDST is especially valuable for, but not limited to,temporal-temporal prediction problems, offering a powerful tool for researchers and practitioners in various data analysis fields.
arXiv Detail & Related papers (2024-08-19T07:31:31Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
This study explores model adaptation and generalization by utilizing synthetic data.
We employ quantitative measures such as Kullback-Leibler divergence, Jensen-Shannon distance, and Mahalanobis distance to assess data similarity.
Our findings suggest that utilizing statistical measures, such as the Mahalanobis distance, to determine whether model predictions fall within the low-error "interpolation regime" or the high-error "extrapolation regime" provides a complementary method for assessing distribution shift and model uncertainty.
arXiv Detail & Related papers (2024-05-03T10:05:31Z) - Causality-oriented robustness: exploiting general additive interventions [3.871660145364189]
In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG)
In a linear setting, we prove that DRIG yields predictions that are robust among a data-dependent class of distribution shifts.
We extend our approach to the semi-supervised domain adaptation setting to further improve prediction performance.
arXiv Detail & Related papers (2023-07-18T16:22:50Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - The Lifecycle of a Statistical Model: Model Failure Detection,
Identification, and Refitting [26.351782287953267]
We develop tools and theory for detecting and identifying regions of the covariate space (subpopulations) where model performance has begun to degrade.
We present empirical results with three real-world data sets.
We complement these empirical results with theory proving that our methodology is minimax optimal for recovering anomalous subpopulations.
arXiv Detail & Related papers (2022-02-08T22:02:31Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.