論文の概要: Multimodal Atmospheric Super-Resolution With Deep Generative Models
- arxiv url: http://arxiv.org/abs/2506.22780v1
- Date: Sat, 28 Jun 2025 06:47:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.563221
- Title: Multimodal Atmospheric Super-Resolution With Deep Generative Models
- Title(参考訳): 深部生成モデルによるマルチモーダル大気超解法
- Authors: Dibyajyoti Chakraborty, Haiwen Guan, Jason Stock, Troy Arcomano, Guido Cervone, Romit Maulik,
- Abstract要約: スコアベース拡散モデリング(Score-based diffusion modeling)は、複雑な分布からサンプリングできる生成機械学習アルゴリズムである。
本稿では,高次元力学系の超解像にそのような概念を適用し,低分解能および実験的に観察されたスパースセンサ測定のリアルタイム利用性を考える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Score-based diffusion modeling is a generative machine learning algorithm that can be used to sample from complex distributions. They achieve this by learning a score function, i.e., the gradient of the log-probability density of the data, and reversing a noising process using the same. Once trained, score-based diffusion models not only generate new samples but also enable zero-shot conditioning of the generated samples on observed data. This promises a novel paradigm for data and model fusion, wherein the implicitly learned distributions of pretrained score-based diffusion models can be updated given the availability of online data in a Bayesian formulation. In this article, we apply such a concept to the super-resolution of a high-dimensional dynamical system, given the real-time availability of low-resolution and experimentally observed sparse sensor measurements from multimodal data. Additional analysis on how score-based sampling can be used for uncertainty estimates is also provided. Our experiments are performed for a super-resolution task that generates the ERA5 atmospheric dataset given sparse observations from a coarse-grained representation of the same and/or from unstructured experimental observations of the IGRA radiosonde dataset. We demonstrate accurate recovery of the high dimensional state given multiple sources of low-fidelity measurements. We also discover that the generative model can balance the influence of multiple dataset modalities during spatiotemporal reconstructions.
- Abstract(参考訳): スコアベース拡散モデリング(Score-based diffusion modeling)は、複雑な分布からサンプリングできる生成機械学習アルゴリズムである。
これは、スコア関数、すなわちデータの対数確率密度の勾配を学習し、これを用いてノイズ発生過程を反転させることによって達成される。
一度トレーニングされると、スコアベースの拡散モデルは新しいサンプルを生成するだけでなく、観測データ上で生成されたサンプルのゼロショット条件付けを可能にする。
これはデータとモデル融合のための新しいパラダイムを約束するものであり、ベイズ式でオンラインデータが利用できることを考えると、事前訓練されたスコアベースの拡散モデルの暗黙的に学習された分布を更新することができる。
本稿では,高次元力学系の超解像にそのような概念を適用し,マルチモーダルデータから低分解能および実験的に観測されたスパースセンサのリアルタイム測定値について検討する。
また,不確実性推定にスコアベースサンプリングをどのように利用できるか,さらに分析を行った。
IGRAラジオゾンデデータセットの粗粒度および/または非構造的な実験結果から、粗粒度の粗粒度から、ERA5大気データセットを生成する超高分解能タスクについて実験を行った。
低忠実度測定の複数の情報源から得られた高次元状態の正確な回復を実証する。
また, 時空間再構成において, 生成モデルが複数のデータセットモダリティの影響のバランスをとることも確認した。
関連論文リスト
- Diffusion Models Learn Low-Dimensional Distributions via Subspace Clustering [15.326641037243006]
拡散モデルは画像分布を効果的に学習し、新しいサンプルを生成する。
我々は、この現象に関する理論的な洞察を、重要な経験的観測を利用して提供する。
基礎となる分布を学習するのに必要となるサンプルの最小数は、本質的な次元と線形にスケールすることを示す。
論文 参考訳(メタデータ) (2024-09-04T04:14:02Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。