Listener-Rewarded Thinking in VLMs for Image Preferences
- URL: http://arxiv.org/abs/2506.22832v2
- Date: Tue, 01 Jul 2025 13:53:50 GMT
- Title: Listener-Rewarded Thinking in VLMs for Image Preferences
- Authors: Alexander Gambashidze, Li Pengyi, Matvey Skripkin, Andrey Galichin, Anton Gusarov, Konstantin Sobolev, Andrey Kuznetsov, Ivan Oseledets,
- Abstract summary: We introduce a listener-augmented GRPO framework to train visual reward models.<n>Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark.<n>These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences.
- Score: 38.07052490646366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.
Related papers
- ReasonGRM: Enhancing Generative Reward Models through Large Reasoning Models [9.30148520355391]
We present ReasonGRM, a three-stage generative reward modeling framework.<n>In the first stage, Zero-RL is used to generate concise, outcome-directed reasoning paths.<n>In the second stage, $Rstar$, which scores reasoning paths based on their generation likelihood.<n>In the final stage, the model is further refined through reinforcement learning to enhance its preference discrimination capabilities.
arXiv Detail & Related papers (2025-06-20T03:10:52Z) - Alignment as Distribution Learning: Your Preference Model is Explicitly a Language Model [12.063078727764045]
We argue that alignment via reinforcement learning from human feedback lacks theoretical justification and incentivizes deterministic solutions.<n>We propose three principled learning objectives: preference maximum likelihood estimation, preference distillation, and reverse KL minimization.<n>We empirically demonstrate that our distribution learning framework, especially preference distillation, consistently outperforms or matches the performances of RLHF and DPO.
arXiv Detail & Related papers (2025-06-02T10:36:31Z) - Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models [50.4652276723694]
Think-RM generates flexible, self-guided reasoning traces that support advanced capabilities.<n>Think-RM achieves state-of-the-art results on RM-Bench, outperforming both BT RM and vertically scaled GenRM by 8%.
arXiv Detail & Related papers (2025-05-22T05:56:11Z) - RM-R1: Reward Modeling as Reasoning [81.50471199906738]
Reasoning Reward Models (ReasRMs) formulate reward modeling as a reasoning task.<n>We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1.<n>Our models achieve state-of-the-art performance across three reward model benchmarks on average.
arXiv Detail & Related papers (2025-05-05T06:11:12Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment [51.14207112118503]
We introduce preference embedding, an approach that embeds responses into a latent space to capture preferences efficiently.<n>We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.<n>Our method may enhance the alignment of foundation models with nuanced human values.
arXiv Detail & Related papers (2024-10-03T04:22:55Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from
Human Feedback [5.037876196534672]
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) more capable in complex settings.
In this paper, we illustrate the causes of this issue, reviewing relevant literature from model-based reinforcement learning, and argue for solutions.
arXiv Detail & Related papers (2023-10-31T21:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.