論文の概要: Mask-aware Text-to-Image Retrieval: Referring Expression Segmentation Meets Cross-modal Retrieval
- arxiv url: http://arxiv.org/abs/2506.22864v1
- Date: Sat, 28 Jun 2025 12:19:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.608025
- Title: Mask-aware Text-to-Image Retrieval: Referring Expression Segmentation Meets Cross-modal Retrieval
- Title(参考訳): マスクを意識したテキストから画像への検索:表現セグメンテーションの参照とモーダル検索
- Authors: Li-Cheng Shen, Jih-Kang Hsieh, Wei-Hua Li, Chu-Song Chen,
- Abstract要約: Mask-aware TIR (MaTIR) は、テキストクエリに基づいて関連する画像を見つけることを目的としている。
セグメンテーションを意識した画像検索のための第1段階と、再ランク付けとオブジェクトグラウンド化のための第2段階からなる2段階のフレームワークを提案する。
我々はCOCOとD$3$データセットに対するアプローチを評価し、従来の手法に比べて精度とセグメンテーション品質の両方が大幅に向上したことを示す。
- 参考スコア(独自算出の注目度): 13.296362770269452
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text-to-image retrieval (TIR) aims to find relevant images based on a textual query, but existing approaches are primarily based on whole-image captions and lack interpretability. Meanwhile, referring expression segmentation (RES) enables precise object localization based on natural language descriptions but is computationally expensive when applied across large image collections. To bridge this gap, we introduce Mask-aware TIR (MaTIR), a new task that unifies TIR and RES, requiring both efficient image search and accurate object segmentation. To address this task, we propose a two-stage framework, comprising a first stage for segmentation-aware image retrieval and a second stage for reranking and object grounding with a multimodal large language model (MLLM). We leverage SAM 2 to generate object masks and Alpha-CLIP to extract region-level embeddings offline at first, enabling effective and scalable online retrieval. Secondly, MLLM is used to refine retrieval rankings and generate bounding boxes, which are matched to segmentation masks. We evaluate our approach on COCO and D$^3$ datasets, demonstrating significant improvements in both retrieval accuracy and segmentation quality over previous methods.
- Abstract(参考訳): テキスト・ツー・イメージ検索(TIR)は,テキスト検索に基づく関連画像の検索を目的としているが,既存のアプローチは主に画像全体のキャプションに基づいており,解釈性に欠ける。
一方、RES(reference expression segmentation)は、自然言語記述に基づく正確なオブジェクトローカライゼーションを可能にするが、大規模な画像コレクションに適用する場合は計算コストがかかる。
このギャップを埋めるために,TIRとRESを統合する新しいタスクであるMask-aware TIR(MaTIR)を導入する。
この課題に対処するために,セグメンテーション対応画像検索の第1段階と,マルチモーダル大言語モデル(MLLM)を用いたオブジェクトグラウンドディングの2段階からなる2段階のフレームワークを提案する。
SAM 2を利用してオブジェクトマスクとAlpha-CLIPを生成し、最初にオフラインで領域レベルの埋め込みを抽出し、効果的でスケーラブルなオンライン検索を可能にする。
第2に、MLLMは検索ランキングを洗練させ、セグメンテーションマスクにマッチしたバウンディングボックスを生成するために使用される。
我々はCOCOとD$^3$データセットに対するアプローチを評価し、従来の手法に比べて精度とセグメンテーション品質の両方が大幅に向上したことを示す。
関連論文リスト
- Referring Expression Instance Retrieval and A Strong End-to-End Baseline [37.47466772169063]
テキスト画像検索は、画像レベルの記述に基づいてギャラリーからターゲット画像を取得する。
Referring Expressionは、インスタンスレベルの記述を使用して、所定のイメージ内でターゲットオブジェクトをローカライズする。
我々は、インスタンスレベルの検索とローカライゼーションの両方をサポートする textbfReferring Expression Instance Retrieval (REIR) という新しいタスクを導入する。
論文 参考訳(メタデータ) (2025-06-23T02:28:44Z) - MLLM-Guided VLM Fine-Tuning with Joint Inference for Zero-Shot Composed Image Retrieval [50.062817677022586]
Zero-Shot Image Retrieval (ZS-CIR) メソッドは通常、参照イメージを擬似テキストトークンに変換するアダプタを訓練する。
MLLM-Guided VLM Fine-Tuning with Joint Inference (MVFT-JI) を提案する。
論文 参考訳(メタデータ) (2025-05-26T08:56:59Z) - LlamaSeg: Image Segmentation via Autoregressive Mask Generation [46.17509085054758]
LlamaSegは視覚的自己回帰フレームワークで、自然言語による複数の画像分割タスクを統一する。
マスクを「視覚的」トークンとして表現し、LLaMA方式のトランスフォーマーを用いて画像入力から直接予測することで、画像分割を視覚生成問題として再構成する。
論文 参考訳(メタデータ) (2025-05-26T02:22:41Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
テキスト画像検索(TIIR)タスクを導入し、クエリと文書をインターリーブしたテキスト画像シーケンスとする。
我々は、自然にインターリーブされたwikiHowチュートリアルに基づいてTIIRベンチマークを構築し、インターリーブされたクエリを生成するために特定のパイプラインを設計する。
異なる粒度で視覚トークンの数を圧縮する新しいMMEを提案する。
論文 参考訳(メタデータ) (2025-02-18T12:00:47Z) - CALICO: Part-Focused Semantic Co-Segmentation with Large Vision-Language Models [2.331828779757202]
本稿では,マルチイメージ部分レベルの推論セグメンテーションのためのLVLM(Large Vision-Language Model)を提案する。
セマンティックな部分レベルの対応を識別する新しい対応抽出モジュールと、この情報をLVLMに埋め込む適応対応モジュールである。
パラメータの0.3%しか微調整されていないCALICOは,この課題に対して高いパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-12-26T18:59:37Z) - Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [50.433911327489554]
リモートセンシング画像セグメンテーション(RRSIS)の目標は、参照式によって識別された対象オブジェクトの画素レベルマスクを生成することである。
上記の課題に対処するため、クロスモーダル双方向相互作用モデル(CroBIM)と呼ばれる新しいRRSISフレームワークが提案されている。
RRSISの研究をさらに推し進めるために、52,472個の画像言語ラベル三重項からなる新しい大規模ベンチマークデータセットRISBenchを構築した。
論文 参考訳(メタデータ) (2024-10-11T08:28:04Z) - Beyond One-to-One: Rethinking the Referring Image Segmentation [117.53010476628029]
イメージセグメンテーションの参照は、自然言語表現によって参照される対象オブジェクトをセグメンテーションすることを目的としている。
2つのデコーダ分岐を含むDMMI(Dual Multi-Modal Interaction)ネットワークを提案する。
テキスト・ツー・イメージ・デコーダでは、テキストの埋め込みを利用して視覚的特徴を検索し、対応するターゲットをローカライズする。
一方、画像からテキストへのデコーダは、視覚的特徴に条件付けられた消去されたエンティティ・フレーズを再構成するために実装される。
論文 参考訳(メタデータ) (2023-08-26T11:39:22Z) - StrucTexTv2: Masked Visual-Textual Prediction for Document Image
Pre-training [64.37272287179661]
StrucTexTv2は、効果的なドキュメントイメージ事前トレーニングフレームワークである。
マスク付き画像モデリングとマスク付き言語モデリングの2つの自己教師付き事前訓練タスクで構成されている。
画像分類、レイアウト解析、テーブル構造認識、ドキュメントOCR、情報抽出など、さまざまな下流タスクにおいて、競合的あるいは新しい最先端パフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-03-01T07:32:51Z) - Locate then Segment: A Strong Pipeline for Referring Image Segmentation [73.19139431806853]
参照画像セグメンテーションは、自然言語表現によって参照されるオブジェクトをセグメンテーションすることを目的とする。
従来の方法は、視覚言語機能を融合させ、最終的なセグメンテーションマスクを直接生成するための暗黙的および反復的な相互作用メカニズムの設計に焦点を当てています。
これらの問題に取り組むための「Then-Then-Segment」スキームを紹介します。
私たちのフレームワークはシンプルですが驚くほど効果的です。
論文 参考訳(メタデータ) (2021-03-30T12:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。