論文の概要: Region-Aware CAM: High-Resolution Weakly-Supervised Defect Segmentation via Salient Region Perception
- arxiv url: http://arxiv.org/abs/2506.22866v1
- Date: Sat, 28 Jun 2025 12:24:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.610079
- Title: Region-Aware CAM: High-Resolution Weakly-Supervised Defect Segmentation via Salient Region Perception
- Title(参考訳): 領域認識型CAM: 極端領域知覚による高分解能弱修正欠陥分割
- Authors: Hang-Cheng Dong, Lu Zou, Bingguo Liu, Dong Ye, Guodong Liu,
- Abstract要約: 本稿では,弱教師付きセマンティックセマンティックセグメンテーションフレームワークを提案する。
リージョン対応のクラスアクティベーションマップ(CAM)と擬似ラベルトレーニングで構成されている。
提案手法は,弱教師付き学習と高精度欠陥分割のギャップを効果的に埋めるものである。
- 参考スコア(独自算出の注目度): 2.9962030276180758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface defect detection plays a critical role in industrial quality inspection. Recent advances in artificial intelligence have significantly enhanced the automation level of detection processes. However, conventional semantic segmentation and object detection models heavily rely on large-scale annotated datasets, which conflicts with the practical requirements of defect detection tasks. This paper proposes a novel weakly supervised semantic segmentation framework comprising two key components: a region-aware class activation map (CAM) and pseudo-label training. To address the limitations of existing CAM methods, especially low-resolution thermal maps, and insufficient detail preservation, we introduce filtering-guided backpropagation (FGBP), which refines target regions by filtering gradient magnitudes to identify areas with higher relevance to defects. Building upon this, we further develop a region-aware weighted module to enhance spatial precision. Finally, pseudo-label segmentation is implemented to refine the model's performance iteratively. Comprehensive experiments on industrial defect datasets demonstrate the superiority of our method. The proposed framework effectively bridges the gap between weakly supervised learning and high-precision defect segmentation, offering a practical solution for resource-constrained industrial scenarios.
- Abstract(参考訳): 表面欠陥検出は産業品質検査において重要な役割を担っている。
人工知能の最近の進歩により、検出プロセスの自動化レベルが大幅に向上した。
しかし、従来のセマンティックセグメンテーションとオブジェクト検出モデルは、欠陥検出タスクの実際的な要求と矛盾する大規模な注釈付きデータセットに大きく依存している。
本稿では,領域認識型クラスアクティベーションマップ(CAM)と擬似ラベル学習という2つの重要な構成要素からなる,弱教師付きセマンティックセマンティックセマンティクスフレームワークを提案する。
既存のCAM法,特に低分解能サーマルマップの限界に対処し,詳細な保存が不十分なため,フィルタ誘導バックプロパゲーション(FGBP)を導入する。
これに基づいて,空間精度を高めるため,領域対応重み付きモジュールをさらに開発する。
最後に、モデルの性能を反復的に改善するために擬似ラベルセグメンテーションが実装される。
産業欠陥データセットに関する総合的な実験は,本手法の優位性を実証している。
提案手法は,弱教師付き学習と高精度欠陥セグメンテーションのギャップを効果的に埋め,資源制約のある産業シナリオに対する実用的な解決策を提供する。
関連論文リスト
- Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
異常検出は産業アプリケーションの品質管理において重要な役割を担っている。
既存の方法は、一般化可能なモデルをトレーニングすることで、ドメインシフトに対処しようとする。
提案手法は,最先端の異常検出法や領域適応法と比較して,優れた結果を示す。
論文 参考訳(メタデータ) (2025-03-19T05:25:52Z) - EIAD: Explainable Industrial Anomaly Detection Via Multi-Modal Large Language Models [23.898938659720503]
工業異常検出(IAD)は製造中の製品品質を確保するために重要である。
本稿では,コア特徴抽出からダイアログ機能を分離する専用マルチモーダル欠陥ローカライゼーションモジュールを提案する。
私たちはまた、Defect Detection Question Answering (DDQA) という、最初のマルチモーダル産業異常検出トレーニングデータセットにも貢献する。
論文 参考訳(メタデータ) (2025-03-18T11:33:29Z) - Exploring Large Vision-Language Models for Robust and Efficient Industrial Anomaly Detection [4.691083532629246]
CLAD(Contrastive Cross-Modal Training)を用いた視覚言語異常検出法を提案する。
CLADは、視覚的特徴とテキスト的特徴をコントラスト学習を用いて共有埋め込み空間に整列する。
CLADは画像レベルの異常検出と画素レベルの異常局所化の両方において最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-12-01T17:00:43Z) - Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection [12.417754433715903]
Sparse Semi-DETRは、トランスフォーマーをベースとした、エンドツーエンドの半教師付きオブジェクト検出ソリューションである。
Sparse Semi-DETR には Query Refinement Module が組み込まれており、オブジェクトクエリの品質を高め、小型で部分的に隠されたオブジェクトの検出能力を著しく改善している。
MS-COCOおよびPascal VOCオブジェクト検出ベンチマークでは、Sparse Semi-DETRは現在の最先端手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-04-02T10:22:23Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Decoupled DETR: Spatially Disentangling Localization and Classification
for Improved End-to-End Object Detection [48.429555904690595]
本稿では,タスク認識型問合せ生成モジュールと切り離された特徴学習プロセスを含む空間的に分離されたDETRを紹介する。
提案手法は,従来の研究に比べてMSCOCOデータセットの大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2023-10-24T15:54:11Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
本稿では,クロスドメインオブジェクト検出のための特徴適応手法を提案する。
粗粒度では、アテンション機構を採用して前景領域を抽出し、その辺縁分布に応じて整列する。
粒度の細かい段階では、同じカテゴリのグローバルプロトタイプと異なるドメインとの距離を最小化することにより、前景の条件分布アライメントを行う。
論文 参考訳(メタデータ) (2020-03-23T13:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。