論文の概要: Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection
- arxiv url: http://arxiv.org/abs/2404.01819v1
- Date: Tue, 2 Apr 2024 10:22:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 16:59:04.338243
- Title: Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection
- Title(参考訳): Sparse Semi-DETR:Sparse Learnable Queries for Semi-Supervised Object Detection
- Authors: Tahira Shehzadi, Khurram Azeem Hashmi, Didier Stricker, Muhammad Zeshan Afzal,
- Abstract要約: Sparse Semi-DETRは、トランスフォーマーをベースとした、エンドツーエンドの半教師付きオブジェクト検出ソリューションである。
Sparse Semi-DETR には Query Refinement Module が組み込まれており、オブジェクトクエリの品質を高め、小型で部分的に隠されたオブジェクトの検出能力を著しく改善している。
MS-COCOおよびPascal VOCオブジェクト検出ベンチマークでは、Sparse Semi-DETRは現在の最先端手法よりも大幅に改善されている。
- 参考スコア(独自算出の注目度): 12.417754433715903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the limitations of the DETR-based semi-supervised object detection (SSOD) framework, particularly focusing on the challenges posed by the quality of object queries. In DETR-based SSOD, the one-to-one assignment strategy provides inaccurate pseudo-labels, while the one-to-many assignments strategy leads to overlapping predictions. These issues compromise training efficiency and degrade model performance, especially in detecting small or occluded objects. We introduce Sparse Semi-DETR, a novel transformer-based, end-to-end semi-supervised object detection solution to overcome these challenges. Sparse Semi-DETR incorporates a Query Refinement Module to enhance the quality of object queries, significantly improving detection capabilities for small and partially obscured objects. Additionally, we integrate a Reliable Pseudo-Label Filtering Module that selectively filters high-quality pseudo-labels, thereby enhancing detection accuracy and consistency. On the MS-COCO and Pascal VOC object detection benchmarks, Sparse Semi-DETR achieves a significant improvement over current state-of-the-art methods that highlight Sparse Semi-DETR's effectiveness in semi-supervised object detection, particularly in challenging scenarios involving small or partially obscured objects.
- Abstract(参考訳): 本稿では,DreTRに基づく半教師付きオブジェクト検出(SSOD)フレームワークの限界に対処する。
DETRベースのSSODでは、1対1の代入戦略は不正確な擬似ラベルを提供し、一方1対1の代入戦略は重なり合う予測をもたらす。
これらの問題は訓練効率を損なうとともにモデル性能を低下させる。
Sparse Semi-DETRは、トランスフォーマーをベースとした、エンドツーエンドの半教師付きオブジェクト検出ソリューションである。
Sparse Semi-DETR には Query Refinement Module が組み込まれており、オブジェクトクエリの品質を高め、小型で部分的に隠されたオブジェクトの検出能力を著しく改善している。
さらに、高品質な擬似ラベルを選択的にフィルタリングし、検出精度と整合性を向上させる信頼性の高い擬似ラベルフィルタリングモジュールを統合する。
MS-COCO と Pascal のVOC オブジェクト検出ベンチマークでは、Sparse Semi-DETR が半教師付きオブジェクト検出において、特に小または部分的に隠蔽されたオブジェクトを含む困難なシナリオにおいて、Sparse Semi-DETR の有効性を強調した現在の最先端メソッドよりも大幅に改善されている。
関連論文リスト
- A Novel Unified Architecture for Low-Shot Counting by Detection and Segmentation [10.461109095311546]
ローショットオブジェクトカウンタは、注釈付き例題をほとんどあるいは全く使用せずに画像内のオブジェクト数を推定する。
既存のアプローチは、しばしば過一般化と偽陽性検出につながる。
本稿では,オブジェクト検出,セグメンテーション,カウント推定を行う新しいローショットカウンタであるGeCoを紹介する。
論文 参考訳(メタデータ) (2024-09-27T12:20:29Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
検出器内のOAA(Occlusion-Aware Attention)モジュールは、隠蔽された背景領域を抑えながらオブジェクトの特徴を強調する。
OAAは、隠蔽される可能性のある物体の検出器を強化する変調器として機能する。
最適輸送問題に基づくRe-ID埋め込みマッチングブロックを設計する。
論文 参考訳(メタデータ) (2023-08-30T06:56:53Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - A Tri-Layer Plugin to Improve Occluded Detection [100.99802831241583]
本研究では,2段階物体検出装置の頭部検出のための単純な''モジュールを提案し,部分閉塞物体のリコールを改善する。
モジュールは、ターゲットオブジェクト、オクルーダー、オクラデーのセグメンテーションマスクの三層を予測し、それによってターゲットオブジェクトのマスクをより正確に予測することができる。
また,COCO評価データセットを構築し,部分閉塞オブジェクトと分離オブジェクトのリコール性能を測定した。
論文 参考訳(メタデータ) (2022-10-18T17:59:51Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - SIOD: Single Instance Annotated Per Category Per Image for Object
Detection [67.64774488115299]
画像内の既存のカテゴリ毎に1つのインスタンスアノテーションのみを必要とする単一インスタンスアノテーションオブジェクト検出(SIOD)を提案する。
WSOD(Inter-task)やSSOD(Inter-image)の相違点からイメージ内の相違点に分解されたSIODは、ラベルなしインスタンスの残りをマイニングする上で、より信頼性が高く豊富な事前知識を提供する。
SIOD設定下では、類似性に基づく擬似ラベル生成モジュール(SPLG)と、Pixelレベルのグループコントラスト学習モジュール(PGCL)からなる、シンプルで効果的なフレームワークであるDual-Mining(DMiner)を提案する。
論文 参考訳(メタデータ) (2022-03-29T08:49:51Z) - Plug-and-Play Few-shot Object Detection with Meta Strategy and Explicit
Localization Inference [78.41932738265345]
本稿では, 微調整を行なわずに新しいカテゴリーの物体を正確に検出できるプラグ検出器を提案する。
局所化プロセスに2つの明示的な推論を導入し、アノテーション付きデータへの依存を減らす。
これは、様々な評価プロトコルの下で、効率、精度、リコールの両方において大きなリードを示している。
論文 参考訳(メタデータ) (2021-10-26T03:09:57Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z) - Cascade Attentive Dropout for Weakly Supervised Object Detection [7.697578661762592]
弱教師付きオブジェクト検出(WSOD)は、画像レベルの監視のみでオブジェクトを分類し、特定することを目的としている。
多くのWSODアプローチでは、初期モデルとして複数のインスタンス学習を採用しており、最も識別可能なオブジェクト領域に収束しがちである。
本研究では,グローバルなコンテキストモジュールの改良とともに,部分支配問題を緩和するための新しいカスケード注意型ドロップアウト戦略を提案する。
論文 参考訳(メタデータ) (2020-11-20T08:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。