Point Cloud Compression and Objective Quality Assessment: A Survey
- URL: http://arxiv.org/abs/2506.22902v1
- Date: Sat, 28 Jun 2025 14:34:24 GMT
- Title: Point Cloud Compression and Objective Quality Assessment: A Survey
- Authors: Yiling Xu, Yujie Zhang, Shuting Xia, Kaifa Yang, He Huang, Ziyu Shan, Wenjie Huang, Qi Yang, Le Yang,
- Abstract summary: 3D point cloud data is driven by applications in autonomous driving, robotics, and immersive environments.<n>Unlike traditional 2D media, point clouds present unique challenges due to their irregular structure, high data volume, and complex attributes.
- Score: 22.27629022031786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of 3D point cloud data, driven by applications in autonomous driving, robotics, and immersive environments, has led to criticals demand for efficient compression and quality assessment techniques. Unlike traditional 2D media, point clouds present unique challenges due to their irregular structure, high data volume, and complex attributes. This paper provides a comprehensive survey of recent advances in point cloud compression (PCC) and point cloud quality assessment (PCQA), emphasizing their significance for real-time and perceptually relevant applications. We analyze a wide range of handcrafted and learning-based PCC algorithms, along with objective PCQA metrics. By benchmarking representative methods on emerging datasets, we offer detailed comparisons and practical insights into their strengths and limitations. Despite notable progress, challenges such as enhancing visual fidelity, reducing latency, and supporting multimodal data remain. This survey outlines future directions, including hybrid compression frameworks and advanced feature extraction strategies, to enable more efficient, immersive, and intelligent 3D applications.
Related papers
- Low-Complexity Patch-based No-Reference Point Cloud Quality Metric exploiting Weighted Structure and Texture Features [5.409704301731714]
PST-PCQA is a no-reference point cloud quality metric based on a low-complexity, learning-based framework.<n>It evaluates point cloud quality by analyzing individual patches, integrating local and global features to predict the Mean Opinion Score.
arXiv Detail & Related papers (2025-03-19T08:52:04Z) - Implicit Neural Compression of Point Clouds [58.45774938982386]
NeRC$textbf3$ is a novel point cloud compression framework leveraging implicit neural representations to handle both geometry and attributes.<n>For dynamic point clouds, 4D-NeRC$textbf3$ demonstrates superior geometry compression compared to state-of-the-art G-PCC and V-PCC standards.
arXiv Detail & Related papers (2024-12-11T03:22:00Z) - No-Reference Point Cloud Quality Assessment via Graph Convolutional Network [89.12589881881082]
Three-dimensional (3D) point cloud, as an emerging visual media format, is increasingly favored by consumers.
Point clouds inevitably suffer from quality degradation and information loss through multimedia communication systems.
We propose a novel no-reference PCQA method by using a graph convolutional network (GCN) to characterize the mutual dependencies of multi-view 2D projected image contents.
arXiv Detail & Related papers (2024-11-12T11:39:05Z) - Building-PCC: Building Point Cloud Completion Benchmarks [0.0]
Lidar technology has been widely applied in the collection of 3D data in urban scenes.
The collected point cloud data often exhibit incompleteness due to factors such as occlusion, signal absorption, and specular reflection.
This paper explores the application of point cloud completion technologies in processing these incomplete data.
arXiv Detail & Related papers (2024-04-24T04:50:50Z) - Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
We propose no-reference quality metric of a given 3D-PC.
To map the input attributes to quality score, we use a light-weight hybrid deep model; combined of Deformable Convolutional Network (DCN) and Vision Transformers (ViT)
The results show that our approach outperforms state-of-the-art NR-PCQA measures and even some FR-PCQA on PointXR.
arXiv Detail & Related papers (2023-12-10T19:13:34Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
We propose simple baselines for projection-based point cloud quality assessment (PCQA)
We use multi-projections obtained via a common cube-like projection process from the point clouds for both full-reference (FR) and no-reference (NR) PCQA tasks.
Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving the top spot in four out of the five competition tracks.
arXiv Detail & Related papers (2023-10-26T04:42:57Z) - Point Cloud Registration for LiDAR and Photogrammetric Data: a Critical
Synthesis and Performance Analysis on Classic and Deep Learning Algorithms [7.874736360019618]
We provide a comprehensive review of the state-of-the-art (SOTA) point cloud registration methods.
We analyze and evaluate these methods using a diverse set of point cloud data from indoor to satellite sources.
More than ten methods, including classic hand-crafted, deep-learning-based feature correspondence, and robust C2C methods were tested.
arXiv Detail & Related papers (2023-02-14T16:52:26Z) - PCQA-GRAPHPOINT: Efficients Deep-Based Graph Metric For Point Cloud
Quality Assessment [11.515951211296361]
3D Point Clouds (PC) have emerged as a promising solution and effective means to display 3D visual information.
This paper introduces a novel and efficient objective metric for Point Clouds Quality Assessment, by learning intrinsic local dependencies using Graph Neural Network (GNN)
The results demonstrate the effectiveness and reliability of our solution compared to state-of-the-art metrics.
arXiv Detail & Related papers (2022-11-04T13:45:54Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
We propose an objective point cloud quality index with Structure Guided Resampling (SGR) to automatically evaluate the perceptually visual quality of 3D dense point clouds.
The proposed SGR is a general-purpose blind quality assessment method without the assistance of any reference information.
arXiv Detail & Related papers (2022-08-31T02:42:55Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.