論文の概要: A Study on Semi-Supervised Detection of DDoS Attacks under Class Imbalance
- arxiv url: http://arxiv.org/abs/2506.22949v1
- Date: Sat, 28 Jun 2025 16:47:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.64053
- Title: A Study on Semi-Supervised Detection of DDoS Attacks under Class Imbalance
- Title(参考訳): クラス不均衡下におけるDDoS攻撃の半監視検出に関する研究
- Authors: Ehsan Hallaji, Vaishnavi Shanmugam, Roozbeh Razavi-Far, Mehrdad Saif,
- Abstract要約: 本研究では、データの不均衡や部分的にラベル付けされた場合のDDoS攻撃検出を改善するために、セミスーパーバイザードラーニング(SSL)技術を用いて検討する。
いくつかのシナリオでDDoS攻撃を検出するために,13の最先端SSLアルゴリズムを評価した。
- 参考スコア(独自算出の注目度): 5.62479170374811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most difficult challenges in cybersecurity is eliminating Distributed Denial of Service (DDoS) attacks. Automating this task using artificial intelligence is a complex process due to the inherent class imbalance and lack of sufficient labeled samples of real-world datasets. This research investigates the use of Semi-Supervised Learning (SSL) techniques to improve DDoS attack detection when data is imbalanced and partially labeled. In this process, 13 state-of-the-art SSL algorithms are evaluated for detecting DDoS attacks in several scenarios. We evaluate their practical efficacy and shortcomings, including the extent to which they work in extreme environments. The results will offer insight into designing intelligent Intrusion Detection Systems (IDSs) that are robust against class imbalance and handle partially labeled data.
- Abstract(参考訳): サイバーセキュリティにおける最も難しい課題の1つは、Distributed Denial of Service(DDoS)攻撃の排除である。
このタスクを人工知能を使って自動化するのは、固有のクラス不均衡と、実世界のデータセットの十分なラベル付きサンプルが欠如しているため、複雑なプロセスである。
本研究では、データの不均衡や部分的にラベル付けされた場合のDDoS攻撃検出を改善するために、セミスーパーバイザードラーニング(SSL)技術を用いて検討する。
このプロセスでは、いくつかのシナリオでDDoS攻撃を検出するために、13の最先端SSLアルゴリズムが評価される。
極端な環境下での作業の程度を含む,実践的有効性や欠点を評価した。
結果は、クラス不均衡に対して堅牢で、部分的にラベル付けされたデータを扱うインテリジェントな侵入検知システム(IDS)の設計に関する洞察を提供する。
関連論文リスト
- Detection of Distributed Denial of Service Attacks based on Machine Learning Algorithms [1.8311368766923968]
我々は、DDoS攻撃インスタンスを良質なインスタンスから分離するために、異なる機械学習(ML)技術を研究し、適用する。
本稿では,Webサーバから提供されるサービスが利用可能であることを確実にするために,さまざまな機械学習技術を用いて攻撃を効率的に検出する。
論文 参考訳(メタデータ) (2025-02-03T01:03:39Z) - An Efficient Real Time DDoS Detection Model Using Machine Learning Algorithms [0.0]
本研究は,機械学習アルゴリズムを用いた効率的なリアルタイムDDoS検出システムの開発に焦点をあてる。
この研究は、これらのアルゴリズムの性能を、精度、リコール、F1スコア、時間的複雑さの観点から調査している。
論文 参考訳(メタデータ) (2025-01-24T08:11:57Z) - Application of Machine Learning Techniques for Secure Traffic in NoC-based Manycores [44.99833362998488]
本論文は,NoCベースのマルチコアシステムにおけるDoS攻撃を検出するために,機械学習と時系列を用いたIDS手法を探索する。
マルチコアNoCからトラフィックデータを抽出し,抽出したデータから学習手法を実行する必要がある。
開発されたプラットフォームは、低レベルのプラットフォームでデータを検証します。
論文 参考訳(メタデータ) (2025-01-21T10:58:09Z) - Detecting Distributed Denial of Service Attacks Using Logistic Regression and SVM Methods [0.0]
本論文の目的は、すべてのサービス要求からDDoS攻撃を検出し、DDoSクラスに従ってそれらを分類することである。
SVMとロジスティック回帰という2つの異なる機械学習アプローチが、DDoS攻撃を検出して分類するためのデータセットに実装されている。
Logistic RegressionとSVMはどちらも98.65%の分類精度を達成した。
論文 参考訳(メタデータ) (2024-11-21T13:15:26Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
本稿では,Deep Residual Neural Networks(ResNets)の機能を活用したDDoS攻撃検出の強化手法を提案する。
我々は、良性および悪意のあるデータポイントの表現のバランスをとり、モデルが攻撃を示す複雑なパターンをよりよく識別できるようにする。
実世界のデータセットを用いた実験結果から,従来の手法よりもはるかに優れた99.98%の精度が得られた。
論文 参考訳(メタデータ) (2024-01-06T03:03:52Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - Robust Deep Semi-Supervised Learning: A Brief Introduction [63.09703308309176]
半教師付き学習(SSL)は、ラベルが不十分なときにラベル付きデータを活用することにより、学習性能を向上させることを目的としている。
ディープモデルによるSSLは、標準ベンチマークタスクで成功したことが証明されている。
しかし、それらは現実世界のアプリケーションにおける様々な堅牢性に対する脅威に対して依然として脆弱である。
論文 参考訳(メタデータ) (2022-02-12T04:16:41Z) - Combating Informational Denial-of-Service (IDoS) Attacks: Modeling and
Mitigation of Attentional Human Vulnerability [28.570086492742046]
IDoS攻撃は、人間のオペレーターの認知資源を減らし、人間の顔に隠された本当の攻撃を識別するのを防ぐ。
本研究の目的は、IDoS攻撃の重症度とリスクを軽減するために、IDoS攻撃を正式に定義し、その結果を定量化し、ヒューマンアシストセキュリティ技術を開発することである。
論文 参考訳(メタデータ) (2021-08-04T05:09:32Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z) - On Adversarial Examples and Stealth Attacks in Artificial Intelligence
Systems [62.997667081978825]
本稿では,汎用人工知能(AI)システムに対する2種類の多元性行動の評価と分析を行うための公式な枠組みを提案する。
最初のクラスは、逆例を含み、誤分類を引き起こす入力データの小さな摂動の導入を懸念する。
第2のクラスは、ここで初めて導入され、ステルス攻撃と名付けられたもので、AIシステム自体に対する小さな摂動を伴う。
論文 参考訳(メタデータ) (2020-04-09T10:56:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。