A Study on Semi-Supervised Detection of DDoS Attacks under Class Imbalance
- URL: http://arxiv.org/abs/2506.22949v1
- Date: Sat, 28 Jun 2025 16:47:39 GMT
- Title: A Study on Semi-Supervised Detection of DDoS Attacks under Class Imbalance
- Authors: Ehsan Hallaji, Vaishnavi Shanmugam, Roozbeh Razavi-Far, Mehrdad Saif,
- Abstract summary: This research investigates the use of Semi-Supervised Learning (SSL) techniques to improve DDoS attack detection when data is imbalanced and partially labeled.<n>We evaluate 13 state-of-the-art SSL algorithms for detecting DDoS attacks in several scenarios.
- Score: 5.62479170374811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most difficult challenges in cybersecurity is eliminating Distributed Denial of Service (DDoS) attacks. Automating this task using artificial intelligence is a complex process due to the inherent class imbalance and lack of sufficient labeled samples of real-world datasets. This research investigates the use of Semi-Supervised Learning (SSL) techniques to improve DDoS attack detection when data is imbalanced and partially labeled. In this process, 13 state-of-the-art SSL algorithms are evaluated for detecting DDoS attacks in several scenarios. We evaluate their practical efficacy and shortcomings, including the extent to which they work in extreme environments. The results will offer insight into designing intelligent Intrusion Detection Systems (IDSs) that are robust against class imbalance and handle partially labeled data.
Related papers
- DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective [59.66984417026933]
We introduce a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing)<n>We formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset.<n>Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery.<n>Our benchmark, DATABench, comprises 17 evasion attacks, 5 forgery attacks, and 9
arXiv Detail & Related papers (2025-07-08T03:07:15Z) - Detection of Distributed Denial of Service Attacks based on Machine Learning Algorithms [1.8311368766923968]
We study and apply different Machine Learning (ML) techniques to separate the DDoS attack instances from benign instances.<n>This paper uses different machine learning techniques for the detection of the attacks efficiently in order to make sure the offered services from web servers available.
arXiv Detail & Related papers (2025-02-03T01:03:39Z) - An Efficient Real Time DDoS Detection Model Using Machine Learning Algorithms [0.0]
This research focuses on developing an efficient real-time DDoS detection system using machine learning algorithms.<n>The research explores the performance of these algorithms in terms of precision, recall and F1-score as well as time complexity.
arXiv Detail & Related papers (2025-01-24T08:11:57Z) - Application of Machine Learning Techniques for Secure Traffic in NoC-based Manycores [44.99833362998488]
This document explores an IDS technique using machine learning and temporal series for detecting DoS attacks in NoC-based manycore systems.<n>It is necessary to extract traffic data from a manycore NoC and execute the learning techniques in the extracted data.<n>The developed platform will have its data validated with a low-level platform.
arXiv Detail & Related papers (2025-01-21T10:58:09Z) - Detecting Distributed Denial of Service Attacks Using Logistic Regression and SVM Methods [0.0]
The goal of this paper is to detect DDoS attacks from all service requests and classify them according to DDoS classes.
Two (2) different machine learning approaches, SVM and Logistic Regression, are implemented in the dataset for detecting and classifying DDoS attacks.
Logistic Regression and SVM both achieve 98.65% classification accuracy which is the highest achieved accuracy among other previous experiments with the same dataset.
arXiv Detail & Related papers (2024-11-21T13:15:26Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
We introduce an enhanced approach for DDoS attack detection by leveraging the capabilities of Deep Residual Neural Networks (ResNets)
We balance the representation of benign and malicious data points, enabling the model to better discern intricate patterns indicative of an attack.
Experimental results on a real-world dataset demonstrate that our approach achieves an accuracy of 99.98%, significantly outperforming traditional methods.
arXiv Detail & Related papers (2024-01-06T03:03:52Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - Robust Deep Semi-Supervised Learning: A Brief Introduction [63.09703308309176]
Semi-supervised learning (SSL) aims to improve learning performance by leveraging unlabeled data when labels are insufficient.
SSL with deep models has proven to be successful on standard benchmark tasks.
However, they are still vulnerable to various robustness threats in real-world applications.
arXiv Detail & Related papers (2022-02-12T04:16:41Z) - Combating Informational Denial-of-Service (IDoS) Attacks: Modeling and
Mitigation of Attentional Human Vulnerability [28.570086492742046]
IDoS attacks deplete the cognition resources of human operators to prevent humans from identifying the real attacks hidden among feints.
This work aims to formally define IDoS attacks, quantify their consequences, and develop human-assistive security technologies to mitigate the severity level and risks of IDoS attacks.
arXiv Detail & Related papers (2021-08-04T05:09:32Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation.
The rapid rate and volume of data creation has begun to pose significant challenges for data management and security.
The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance.
arXiv Detail & Related papers (2020-05-23T20:57:12Z) - On Adversarial Examples and Stealth Attacks in Artificial Intelligence
Systems [62.997667081978825]
We present a formal framework for assessing and analyzing two classes of malevolent action towards generic Artificial Intelligence (AI) systems.
The first class involves adversarial examples and concerns the introduction of small perturbations of the input data that cause misclassification.
The second class, introduced here for the first time and named stealth attacks, involves small perturbations to the AI system itself.
arXiv Detail & Related papers (2020-04-09T10:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.