論文の概要: Hierarchical Characterization of Brain Dynamics via State Space-based Vector Quantization
- arxiv url: http://arxiv.org/abs/2506.22952v1
- Date: Sat, 28 Jun 2025 17:12:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.642573
- Title: Hierarchical Characterization of Brain Dynamics via State Space-based Vector Quantization
- Title(参考訳): 状態空間に基づくベクトル量子化による脳のダイナミクスの階層的解析
- Authors: Yanwu Yang, Thomas Wolfers,
- Abstract要約: 本研究では、状態空間モデルに基づく階層構造における脳の状態と遷移を定量化する階層的状態空間に基づくトークン化ネットワークHSTを提案する。
我々はHSTを2つの公開fMRIデータセットで検証し、脳の階層的ダイナミクスを定量化する効果を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding brain dynamics through functional Magnetic Resonance Imaging (fMRI) remains a fundamental challenge in neuroscience, particularly in capturing how the brain transitions between various functional states. Recently, metastability, which refers to temporarily stable brain states, has offered a promising paradigm to quantify complex brain signals into interpretable, discretized representations. In particular, compared to cluster-based machine learning approaches, tokenization approaches leveraging vector quantization have shown promise in representation learning with powerful reconstruction and predictive capabilities. However, most existing methods ignore brain transition dependencies and lack a quantification of brain dynamics into representative and stable embeddings. In this study, we propose a Hierarchical State space-based Tokenization network, termed HST, which quantizes brain states and transitions in a hierarchical structure based on a state space-based model. We introduce a refined clustered Vector-Quantization Variational AutoEncoder (VQ-VAE) that incorporates quantization error feedback and clustering to improve quantization performance while facilitating metastability with representative and stable token representations. We validate our HST on two public fMRI datasets, demonstrating its effectiveness in quantifying the hierarchical dynamics of the brain and its potential in disease diagnosis and reconstruction performance. Our method offers a promising framework for the characterization of brain dynamics, facilitating the analysis of metastability.
- Abstract(参考訳): 機能的磁気共鳴イメージング(fMRI)による脳のダイナミクスの理解は、神経科学における基本的な課題であり、特に脳が様々な機能状態の間でどのように遷移するかを捉えている。
最近、脳の状態を一時的に安定させるメタスタビリティー(Metastability)は、複雑な脳の信号を解釈可能で離散化された表現に定量化する、有望なパラダイムを提供している。
特に、クラスタベースの機械学習アプローチと比較して、ベクトル量子化を利用したトークン化アプローチは、強力な再構成と予測能力を備えた表現学習において有望であることが示されている。
しかし、既存のほとんどの手法は、脳の遷移依存を無視し、代表的で安定した埋め込みへの脳のダイナミクスの定量化を欠いている。
本研究では,階層的空間モデルに基づく階層構造における脳の状態と遷移を定量化する階層的状態空間に基づくトークン化ネットワークHSTを提案する。
本稿では、量子化誤差フィードバックとクラスタリングを組み込んだクラスタ化ベクトル量子化変分自動エンコーダ(VQ-VAE)を導入し、代表および安定なトークン表現によるメタスタビリティを促進しながら、量子化性能を向上させる。
HSTを2つの公開fMRIデータセットで検証し、脳の階層的ダイナミクスの定量化とその疾患診断および再建成績の可能性を実証した。
本手法は,脳の動態を解析する上で有望な枠組みを提供し,メタスタビリティの分析を容易にする。
関連論文リスト
- CSBrain: A Cross-scale Spatiotemporal Brain Foundation Model for EEG Decoding [57.90382885533593]
脳波信号の一般化のためのクロススケール時空間脳基盤モデルを提案する。
CSBrainはタスク固有のベースラインと基盤モデルのベースラインを一貫して上回ります。
これらの結果は、CSBrainを将来の脳-AI研究の強力なバックボーンとして、重要な帰納バイアスとして、クロススケールモデリングを確立している。
論文 参考訳(メタデータ) (2025-06-29T03:29:34Z) - Neural Manifolds and Cognitive Consistency: A New Approach to Memory Consolidation in Artificial Systems [0.0]
本稿では, ニューラル人口動態, 海馬鋭波リップル(SpWR)生成, ハイダー理論に触発された認知的一貫性の制約を統一する新しい数学的枠組みを提案する。
我々のモデルは低次元多様体表現を利用して構造化された神経ドリフトを捕捉し、コヒーレントシナプス相互作用を強制するためにバランスエネルギー関数を組み込む。
この研究は、神経科学と人工知能を橋渡しするスケーラブルなニューロモルフィックアーキテクチャの道を開くもので、将来のインテリジェントシステムに対してより堅牢で適応的な学習メカニズムを提供する。
論文 参考訳(メタデータ) (2025-02-25T18:28:25Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
神経科学とAIの両方では、ニューロン間の'バインディング'が、ネットワークの深い層においてより抽象的な概念を表現するために表現を圧縮する、競争的な学習の形式につながることが知られている。
完全に接続された畳み込みや注意機構などの任意の接続設計とともに人工的再考を導入する。
このアイデアは、教師なしオブジェクト発見、敵対的ロバスト性、不確実性、定量化、推論など、幅広いタスクにわたるパフォーマンス改善を提供する。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Latent Representation Learning for Multimodal Brain Activity Translation [14.511112110420271]
本稿では、空間的および時間的解像度ギャップをモダリティに橋渡しするSAMBA(Spatiotemporal Alignment of Multimodal Brain Activity)フレームワークを提案する。
SAMBAは、電気生理学的記録のスペクトルフィルタリングのための新しい注目ベースのウェーブレット分解を導入した。
SAMBAの学習は、翻訳の他に、脳情報処理の豊かな表現も学べることが示されている。
論文 参考訳(メタデータ) (2024-09-27T05:50:29Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics
Organized by Astrocyte-modulated Plasticity [0.0]
液体状態機械(LSM)は勾配のバックプロパゲーションなしで内部重量を調整する。
近年の知見は、アストロサイトがシナプスの可塑性と脳のダイナミクスを調節していることを示唆している。
本稿では, 自己組織的近接臨界力学を用いて, 性能の低いニューロン-アストロサイト液状状態機械 (NALSM) を提案する。
論文 参考訳(メタデータ) (2021-10-26T23:04:40Z) - Identification of brain states, transitions, and communities using
functional MRI [0.5872014229110214]
ベイズモデルに基づく潜在脳状態のキャラクタリゼーションを提案し,後方予測の不一致に基づく新しい手法を提案する。
タスク-fMRIデータの解析により得られた結果は、外部タスク要求と脳状態間の変化点の間の適切な遅延を示す。
論文 参考訳(メタデータ) (2021-01-26T08:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。