AI's Euclid's Elements Moment: From Language Models to Computable Thought
- URL: http://arxiv.org/abs/2506.23080v2
- Date: Thu, 10 Jul 2025 09:48:50 GMT
- Title: AI's Euclid's Elements Moment: From Language Models to Computable Thought
- Authors: Xinmin Fang, Lingfeng Tao, Zhengxiong Li,
- Abstract summary: This paper presents a comprehensive five-stage evolutionary framework for understanding the development of artificial intelligence.<n>We posit that AI is advancing through distinct epochs, each defined by a revolutionary shift in its capacity for representation and reasoning.
- Score: 2.1142253753427402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive five-stage evolutionary framework for understanding the development of artificial intelligence, arguing that its trajectory mirrors the historical progression of human cognitive technologies. We posit that AI is advancing through distinct epochs, each defined by a revolutionary shift in its capacity for representation and reasoning, analogous to the inventions of cuneiform, the alphabet, grammar and logic, mathematical calculus, and formal logical systems. This "Geometry of Cognition" framework moves beyond mere metaphor to provide a systematic, cross-disciplinary model that not only explains AI's past architectural shifts-from expert systems to Transformers-but also charts a concrete and prescriptive path forward. Crucially, we demonstrate that this evolution is not merely linear but reflexive: as AI advances through these stages, the tools and insights it develops create a feedback loop that fundamentally reshapes its own underlying architecture. We are currently transitioning into a "Metalinguistic Moment," characterized by the emergence of self-reflective capabilities like Chain-of-Thought prompting and Constitutional AI. The subsequent stages, the "Mathematical Symbolism Moment" and the "Formal Logic System Moment," will be defined by the development of a computable calculus of thought, likely through neuro-symbolic architectures and program synthesis, culminating in provably aligned and reliable AI that reconstructs its own foundational representations. This work serves as the methodological capstone to our trilogy, which previously explored the economic drivers ("why") and cognitive nature ("what") of AI. Here, we address the "how," providing a theoretical foundation for future research and offering concrete, actionable strategies for startups and developers aiming to build the next generation of intelligent systems.
Related papers
- Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers [90.4459196223986]
A similar evolution is now unfolding in AI, marking a paradigm shift from models that merely think about images to those that can truly think with images.<n>This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace.
arXiv Detail & Related papers (2025-06-30T14:48:35Z) - Evolution, Future of AI, and Singularity [0.0]
We draw parallels between the modern AI landscape and the 20th-century Modern Synthesis in evolutionary biology.<n>We propose a pathway to overcome existing limitations, enabling AI to achieve its aspirational goals.
arXiv Detail & Related papers (2025-06-18T00:42:10Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - AI and Social Theory [0.0]
We sketch a programme for AI driven social theory, starting by defining what we mean by artificial intelligence (AI)
We then lay out our model for how AI based models can draw on the growing availability of digital data to help test the validity of different social theories based on their predictive power.
arXiv Detail & Related papers (2024-07-07T12:26:16Z) - A mathematical framework of intelligence and consciousness based on Riemannian Geometry [1.9580473532948397]
Understanding intelligence is a central pursuit in neuroscience, cognitive science, and artificial intelligence.
Recent advancements in geometric analysis have revealed new insights into high-dimensional information representation and organisation.
This manuscript proposes a mathematical framework to describe the structure and dynamics of intelligence and consciousness.
arXiv Detail & Related papers (2024-07-02T04:17:56Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - A Historical Interaction between Artificial Intelligence and Philosophy [0.0]
This paper reviews the historical development of AI and representative philosophical thinking from the perspective of the research paradigm.
It considers the methodology and applications of AI from a philosophical perspective and anticipates its continued advancement.
arXiv Detail & Related papers (2022-07-23T22:37:22Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
This paper considers an evolutionary approach to creating a cognitive functionality.
We consider a cognitive architecture which ensures the evolution of the agent on the basis of Symbol Emergence Problem solution.
arXiv Detail & Related papers (2022-07-02T12:41:32Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.