RiverText: A Python Library for Training and Evaluating Incremental Word Embeddings from Text Data Streams
- URL: http://arxiv.org/abs/2506.23192v1
- Date: Sun, 29 Jun 2025 11:34:23 GMT
- Title: RiverText: A Python Library for Training and Evaluating Incremental Word Embeddings from Text Data Streams
- Authors: Gabriel Iturra-Bocaz, Felipe Bravo-Marquez,
- Abstract summary: This paper presents RiverText, a Python library for training and evaluating incremental word embeddings from text data streams.<n>The library implements different incremental word embedding techniques, such as Skip-gram, Continuous Bag of Words, and Word Context Matrix.<n>We have implemented a module that adapts existing intrinsic static word embedding evaluation tasks for word similarity and word categorization to a streaming setting.
- Score: 5.263910852465185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Word embeddings have become essential components in various information retrieval and natural language processing tasks, such as ranking, document classification, and question answering. However, despite their widespread use, traditional word embedding models present a limitation in their static nature, which hampers their ability to adapt to the constantly evolving language patterns that emerge in sources such as social media and the web (e.g., new hashtags or brand names). To overcome this problem, incremental word embedding algorithms are introduced, capable of dynamically updating word representations in response to new language patterns and processing continuous data streams. This paper presents RiverText, a Python library for training and evaluating incremental word embeddings from text data streams. Our tool is a resource for the information retrieval and natural language processing communities that work with word embeddings in streaming scenarios, such as analyzing social media. The library implements different incremental word embedding techniques, such as Skip-gram, Continuous Bag of Words, and Word Context Matrix, in a standardized framework. In addition, it uses PyTorch as its backend for neural network training. We have implemented a module that adapts existing intrinsic static word embedding evaluation tasks for word similarity and word categorization to a streaming setting. Finally, we compare the implemented methods with different hyperparameter settings and discuss the results. Our open-source library is available at https://github.com/dccuchile/rivertext.
Related papers
- An Evaluation of Sindhi Word Embedding in Semantic Analogies and Downstream Tasks [2.3624125155742064]
We propose a new word embedding based corpus consisting of more than 61 million words crawled from multiple web resources.
We design a preprocessing pipeline for the filtration of unwanted text from crawled data.
The cleaned vocabulary is fed to state-of-the-art continuous-bag-of-words, skip-gram, and GloVe word embedding algorithms.
arXiv Detail & Related papers (2024-08-28T11:36:29Z) - From Characters to Words: Hierarchical Pre-trained Language Model for
Open-vocabulary Language Understanding [22.390804161191635]
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens.
This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes.
We introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach.
arXiv Detail & Related papers (2023-05-23T23:22:20Z) - PWESuite: Phonetic Word Embeddings and Tasks They Facilitate [37.09948594297879]
We develop three methods that use articulatory features to build phonetically informed word embeddings.
We also contribute a task suite to fairly evaluate past, current, and future methods.
arXiv Detail & Related papers (2023-04-05T16:03:42Z) - Word-Level Representation From Bytes For Language Modeling [46.28198397863388]
Sub-word tokenization is not robust to noise and difficult to generalize to new languages.
We introduce a cross-attention network that builds word-level representation directly from bytes, and a sub-word level prediction based on word-level hidden states.
Byte2Word is on par with the strong sub-word baseline BERT but only takes up 10% of embedding size.
arXiv Detail & Related papers (2022-11-23T03:11:13Z) - LexSubCon: Integrating Knowledge from Lexical Resources into Contextual
Embeddings for Lexical Substitution [76.615287796753]
We introduce LexSubCon, an end-to-end lexical substitution framework based on contextual embedding models.
This is achieved by combining contextual information with knowledge from structured lexical resources.
Our experiments show that LexSubCon outperforms previous state-of-the-art methods on LS07 and CoInCo benchmark datasets.
arXiv Detail & Related papers (2021-07-11T21:25:56Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Interactive Re-Fitting as a Technique for Improving Word Embeddings [0.0]
We make it possible for humans to adjust portions of a word embedding space by moving sets of words closer to one another.
Our approach allows users to trigger selective post-processing as they interact with and assess potential bias in word embeddings.
arXiv Detail & Related papers (2020-09-30T21:54:22Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
We present the first application of the BERTSum model to conversational language.
We generate abstractive summaries of narrated instructional videos across a wide variety of topics.
We envision this integrated as a feature in intelligent virtual assistants, enabling them to summarize both written and spoken instructional content upon request.
arXiv Detail & Related papers (2020-08-21T20:59:34Z) - Comparative Analysis of Word Embeddings for Capturing Word Similarities [0.0]
Distributed language representation has become the most widely used technique for language representation in various natural language processing tasks.
Most of the natural language processing models that are based on deep learning techniques use already pre-trained distributed word representations, commonly called word embeddings.
selecting the appropriate word embeddings is a perplexing task since the projected embedding space is not intuitive to humans.
arXiv Detail & Related papers (2020-05-08T01:16:03Z) - A Survey on Contextual Embeddings [48.04732268018772]
Contextual embeddings assign each word a representation based on its context, capturing uses of words across varied contexts and encoding knowledge that transfers across languages.
We review existing contextual embedding models, cross-lingual polyglot pre-training, the application of contextual embeddings in downstream tasks, model compression, and model analyses.
arXiv Detail & Related papers (2020-03-16T15:22:22Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
We focus on a new practical task, document-scale text content manipulation, which is the opposite of text style transfer.
In detail, the input is a set of structured records and a reference text for describing another recordset.
The output is a summary that accurately describes the partial content in the source recordset with the same writing style of the reference.
arXiv Detail & Related papers (2020-02-24T12:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.