Spiral dislocation as a tunable geometric parameter for optical responses in quantum rings
- URL: http://arxiv.org/abs/2506.23307v1
- Date: Sun, 29 Jun 2025 15:52:36 GMT
- Title: Spiral dislocation as a tunable geometric parameter for optical responses in quantum rings
- Authors: Hassan Hassanabadi, Kangxian Guo, Liangliang Lu, Edilberto O. Silva,
- Abstract summary: We investigate the optical and quantum mechanical properties of a charged spinless particle confined in a two-dimensional quantum ring.<n>The dislocation is modeled by a torsion-induced metric that alters the spatial geometry without introducing curvature.<n>The geometric deformation leads to an energy-dependent effective potential, enabling a tunable control over the bound-state spectrum.
- Score: 0.562479170374811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the optical and quantum mechanical properties of a charged spinless particle confined in a two-dimensional quantum ring under the simultaneous influence of a spiral dislocation and an external magnetic field. The dislocation is modeled by a torsion-induced metric that alters the spatial geometry without introducing curvature. Using the minimal coupling procedure in curved space, we derive a modified Schr\"odinger equation incorporating both topological and electromagnetic effects. The geometric deformation leads to an energy-dependent effective potential, enabling a tunable control over the bound-state spectrum. We analyze how the spiral dislocation modifies the absorption coefficient, refractive index variation, and photoionization cross-section. The results demonstrate that the dislocation not only shifts the resonance peaks but also enhances or suppresses specific optical transitions depending on the angular momentum. These findings open up possibilities for geometrically tuning light-matter interactions in topological quantum devices.
Related papers
- Geometry-induced Coulomb-like potential in helically twisted quantum systems [0.0]
We investigate the Schr"odinger equation in a three-dimensional helically twisted space characterized by a non-trivial torsion parameter.<n>The intrinsic coupling between angular and longitudinal momenta induced by the torsion gives rise to an attractive Coulomb-like potential term.<n>The interplay between the torsion parameter and the effective Coulomb-like interaction is analyzed in detail, showing how geometric deformation generates novel quantum confinement mechanisms.
arXiv Detail & Related papers (2025-07-06T23:20:26Z) - Quantum nonlocal double slit interference with partially coherent qubits [0.0]
We investigate the effect of coherence variation on non-local double-slit quantum interference.<n>For a fixed beam size, the momentum correlation width of partially coherent biphotons increases with the decreases in the transverse coherence length.<n>Our findings infer both high-quality and near-unity visibility of nonlocal interference using the partially coherent twin beams, even with the substantial decrease in the coherence of the pump.
arXiv Detail & Related papers (2025-03-02T18:46:31Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Interference induced anisotropy in a two-dimensional dark state optical
lattice [0.0]
We describe a two-dimensional optical lattice for ultracold atoms with spatial features below the diffraction limit.
We numerically investigate the energy spectrum including decay from the excited state, and find that the adiabatic approximation is sound for strong coupling strengths.
arXiv Detail & Related papers (2023-04-01T12:02:25Z) - Creating nonlocality using geometric phases between partially
distinguishable photons [0.0]
We show that it is possible to create nonlocal correlations in a fixed interferometer with independent photon inputs by varying the photons' internal states.
By making use of the dynamical quantum Zeno effect, we show that nonlocality can be created in the fixed cyclic interferometer using 12 independent photons.
arXiv Detail & Related papers (2023-02-24T17:03:37Z) - Dissipative Quantum Feedback in Measurements Using a Parametrically
Coupled Microcavity [0.0]
Micro- and nanoscale optical or microwave cavities are used in a wide range of classical applications and quantum science experiments.
Dissipative photon absorption can result in quantum feedback via in-loop field detection of the absorbed optical field.
We experimentally observe such unanticipated dissipative dynamics in optomechanical spectroscopy of sideband-cooled optomechanical crystal cavities.
arXiv Detail & Related papers (2021-09-29T15:12:45Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z) - Orbital angular momentum interference of trapped matter waves [0.0]
We introduce a matter wave interference scheme based on the quantization of orbital angular momentum in a ring trap.
We argue that orbital angular momentum interferometry offers a versatile platform for quantum coherent experiments with cold atoms and Bose-Einstein condensates.
arXiv Detail & Related papers (2020-06-08T11:44:01Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.