Benchmarking Generalizable Bimanual Manipulation: RoboTwin Dual-Arm Collaboration Challenge at CVPR 2025 MEIS Workshop
- URL: http://arxiv.org/abs/2506.23351v2
- Date: Thu, 03 Jul 2025 03:30:42 GMT
- Title: Benchmarking Generalizable Bimanual Manipulation: RoboTwin Dual-Arm Collaboration Challenge at CVPR 2025 MEIS Workshop
- Authors: Tianxing Chen, Kaixuan Wang, Zhaohui Yang, Yuhao Zhang, Zanxin Chen, Baijun Chen, Wanxi Dong, Ziyuan Liu, Dong Chen, Tianshuo Yang, Haibao Yu, Xiaokang Yang, Yusen Qin, Zhiqiang Xie, Yao Mu, Ping Luo, Tian Nian, Weiliang Deng, Yiheng Ge, Yibin Liu, Zixuan Li, Dehui Wang, Zhixuan Liang, Haohui Xie, Rijie Zeng, Yunfei Ge, Peiqing Cong, Guannan He, Zhaoming Han, Ruocheng Yin, Jingxiang Guo, Lunkai Lin, Tianling Xu, Hongzhe Bi, Xuewu Lin, Tianwei Lin, Shujie Luo, Keyu Li, Ziyan Zhao, Ke Fan, Heyang Xu, Bo Peng, Wenlong Gao, Dongjiang Li, Feng Jin, Hui Shen, Jinming Li, Chaowei Cui, Yu Chen, Yaxin Peng, Lingdong Zeng, Wenlong Dong, Tengfei Li, Weijie Ke, Jun Chen, Erdemt Bao, Tian Lan, Tenglong Liu, Jin Yang, Huiping Zhuang, Baozhi Jia, Shuai Zhang, Zhengfeng Zou, Fangheng Guan, Tianyi Jia, Ke Zhou, Hongjiu Zhang, Yating Han, Cheng Fang, Yixian Zou, Chongyang Xu, Qinglun Zhang, Shen Cheng, Xiaohe Wang, Ping Tan, Haoqiang Fan, Shuaicheng Liu, Jiaheng Chen, Chuxuan Huang, Chengliang Lin, Kaijun Luo, Boyu Yue, Yi Liu, Jinyu Chen, Zichang Tan, Liming Deng, Shuo Xu, Zijian Cai, Shilong Yin, Hao Wang, Hongshan Liu, Tianyang Li, Long Shi, Ran Xu, Huilin Xu, Zhengquan Zhang, Congsheng Xu, Jinchang Yang, Feng Xu,
- Abstract summary: RoboTwin Dual-Arm Collaboration Challenge was held at the 2nd MEIS Workshop, CVPR 2025.<n>Competitors totally tackled 17 dual-arm manipulation tasks, covering rigid, deformable, and tactile-based scenarios.<n>Report outlines the competition setup, task design, evaluation methodology, key findings and future direction.
- Score: 120.2806035123366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embodied Artificial Intelligence (Embodied AI) is an emerging frontier in robotics, driven by the need for autonomous systems that can perceive, reason, and act in complex physical environments. While single-arm systems have shown strong task performance, collaborative dual-arm systems are essential for handling more intricate tasks involving rigid, deformable, and tactile-sensitive objects. To advance this goal, we launched the RoboTwin Dual-Arm Collaboration Challenge at the 2nd MEIS Workshop, CVPR 2025. Built on the RoboTwin Simulation platform (1.0 and 2.0) and the AgileX COBOT-Magic Robot platform, the competition consisted of three stages: Simulation Round 1, Simulation Round 2, and a final Real-World Round. Participants totally tackled 17 dual-arm manipulation tasks, covering rigid, deformable, and tactile-based scenarios. The challenge attracted 64 global teams and over 400 participants, producing top-performing solutions like SEM and AnchorDP3 and generating valuable insights into generalizable bimanual policy learning. This report outlines the competition setup, task design, evaluation methodology, key findings and future direction, aiming to support future research on robust and generalizable bimanual manipulation policies. The Challenge Webpage is available at https://robotwin-benchmark.github.io/cvpr-2025-challenge/.
Related papers
- RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins [33.78621017138685]
RoboTwin is a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets.<n>Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios.<n>Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance.
arXiv Detail & Related papers (2025-04-17T16:14:24Z) - REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation [57.628771707989166]
We propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution.<n>ReMAC incorporates two key modules: a self-reflection module performing pre-conditions and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning.
arXiv Detail & Related papers (2025-03-28T03:51:40Z) - A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version) [25.298789781487084]
RoboTwin is a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets.<n>Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios.<n>Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance.
arXiv Detail & Related papers (2024-09-04T17:59:52Z) - GRUtopia: Dream General Robots in a City at Scale [65.08318324604116]
This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots.
GRScenes includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments.
GRResidents is a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction.
arXiv Detail & Related papers (2024-07-15T17:40:46Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Real Robot Challenge 2022: Learning Dexterous Manipulation from Offline
Data in the Real World [38.54892412474853]
The Real Robot Challenge 2022 served as a bridge between the reinforcement learning and robotics communities.
We asked the participants to learn two dexterous manipulation tasks involving pushing, grasping, and in-hand orientation from provided real-robot datasets.
An extensive software documentation and an initial stage based on a simulation of the real set-up made the competition particularly accessible.
arXiv Detail & Related papers (2023-08-15T12:40:56Z) - Surfer: Progressive Reasoning with World Models for Robotic Manipulation [51.26109827779267]
We introduce a novel and simple robot manipulation framework, called Surfer.
Surfer treats robot manipulation as a state transfer of the visual scene, and decouples it into two parts: action and scene.
It is based on the world model, treats robot manipulation as a state transfer of the visual scene, and decouples it into two parts: action and scene.
arXiv Detail & Related papers (2023-06-20T07:06:04Z) - Bi-Manual Block Assembly via Sim-to-Real Reinforcement Learning [24.223788665601678]
Two xArm6 robots solve the U-shape assembly task with a success rate of above90% in simulation, and 50% on real hardware without any additional real-world fine-tuning.
Our results present a significant step forward for bi-arm capability on real hardware, and we hope our system can inspire future research on deep RL and Sim2Real transfer bi-manualpolicies.
arXiv Detail & Related papers (2023-03-27T01:25:24Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
We introduce RoboTHOR to democratize research in interactive and embodied visual AI.
We show there exists a significant gap between the performance of models trained in simulation when they are tested in both simulations and their carefully constructed physical analogs.
arXiv Detail & Related papers (2020-04-14T20:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.