Nonlocal Retinex-Based Variational Model and its Deep Unfolding Twin for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2504.07810v1
- Date: Thu, 10 Apr 2025 14:48:26 GMT
- Title: Nonlocal Retinex-Based Variational Model and its Deep Unfolding Twin for Low-Light Image Enhancement
- Authors: Daniel Torres, Joan Duran, Julia Navarro, Catalina Sbert,
- Abstract summary: We propose a variational method for low-light image enhancement based on the Retinex decomposition.<n>A color correction pre-processing step is applied to the low-light image, which is then used as the observed input in the decomposition.<n>We extend the model by introducing its deep unfolding counterpart, in which the operators are replaced with learnable networks.
- Score: 3.174882428337821
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Images captured under low-light conditions present significant limitations in many applications, as poor lighting can obscure details, reduce contrast, and hide noise. Removing the illumination effects and enhancing the quality of such images is crucial for many tasks, such as image segmentation and object detection. In this paper, we propose a variational method for low-light image enhancement based on the Retinex decomposition into illumination, reflectance, and noise components. A color correction pre-processing step is applied to the low-light image, which is then used as the observed input in the decomposition. Moreover, our model integrates a novel nonlocal gradient-type fidelity term designed to preserve structural details. Additionally, we propose an automatic gamma correction module. Building on the proposed variational approach, we extend the model by introducing its deep unfolding counterpart, in which the proximal operators are replaced with learnable networks. We propose cross-attention mechanisms to capture long-range dependencies in both the nonlocal prior of the reflectance and the nonlocal gradient-based constraint. Experimental results demonstrate that both methods compare favorably with several recent and state-of-the-art techniques across different datasets. In particular, despite not relying on learning strategies, the variational model outperforms most deep learning approaches both visually and in terms of quality metrics.
Related papers
- Dual High-Order Total Variation Model for Underwater Image Restoration [13.789310785350484]
Underwater image enhancement and restoration (UIER) is one crucial mode to improve the visual quality of underwater images.
We propose an effective variational framework based on an extended underwater image formation model (UIFM)
In our proposed framework, the weight factors-based color compensation is combined with the color balance to compensate for the attenuated color channels and remove the color cast.
arXiv Detail & Related papers (2024-07-20T13:06:37Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement [2.9873893715462185]
We propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED.<n>It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains.<n>It successfully alleviates the dependence on pairwise training data via zero-reference learning.
arXiv Detail & Related papers (2024-03-05T11:39:17Z) - Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer
for Exposure Correction [65.5397271106534]
A single neural network is difficult to handle all exposure problems.
In particular, convolutions hinder the ability to restore faithful color or details on extremely over-/under- exposed regions.
We propose a Macro-Micro-Hierarchical transformer, which consists of a macro attention to capture long-range dependencies, a micro attention to extract local features, and a hierarchical structure for coarse-to-fine correction.
arXiv Detail & Related papers (2023-09-02T09:07:36Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data.
We propose a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process.
arXiv Detail & Related papers (2023-07-27T07:22:51Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Learning a Single Convolutional Layer Model for Low Light Image
Enhancement [43.411846299085575]
Low-light image enhancement (LLIE) aims to improve the illuminance of images due to insufficient light exposure.
A single convolutional layer model (SCLM) is proposed that provides global low-light enhancement as the coarsely enhanced results.
Experimental results demonstrate that the proposed method performs favorably against the state-of-the-art LLIE methods in both objective metrics and subjective visual effects.
arXiv Detail & Related papers (2023-05-23T13:12:00Z) - Semi-supervised atmospheric component learning in low-light image
problem [0.0]
Ambient lighting conditions play a crucial role in determining the perceptual quality of images from photographic devices.
This study presents a semi-supervised training method using no-reference image quality metrics for low-light image restoration.
arXiv Detail & Related papers (2022-04-15T17:06:33Z) - Progressive Joint Low-light Enhancement and Noise Removal for Raw Images [10.778200442212334]
Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture.
We propose a low-light image processing framework that performs joint illumination adjustment, color enhancement, and denoising.
Our framework does not need to recollect massive data when being adapted to another camera model.
arXiv Detail & Related papers (2021-06-28T16:43:52Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.