論文の概要: Neuro-Informed Joint Learning Enhances Cognitive Workload Decoding in Portable BCIs
- arxiv url: http://arxiv.org/abs/2506.23458v1
- Date: Mon, 30 Jun 2025 01:42:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.882854
- Title: Neuro-Informed Joint Learning Enhances Cognitive Workload Decoding in Portable BCIs
- Title(参考訳): ニューロインフォーム・ジョイントラーニングは携帯型BCIにおける認知的ワークロードデコーディングを促進する
- Authors: Xiaoxiao Yang, Chan Feng, Jiancheng Chen,
- Abstract要約: ミューズヘッドバンドは、日常的な脳-コンピュータインターフェースアプリケーションに前例のないモビリティを提供する。
携帯型脳波信号の非定常性はデータの忠実度と復号精度を制約する。
自己指導と教師付きトレーニングパラダイムを統合した統合型共同学習フレームワークであるMuseCogNetを提案する。
- 参考スコア(独自算出の注目度): 1.0104586293349587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Portable and wearable consumer-grade electroencephalography (EEG) devices, like Muse headbands, offer unprecedented mobility for daily brain-computer interface (BCI) applications, including cognitive load detection. However, the exacerbated non-stationarity in portable EEG signals constrains data fidelity and decoding accuracy, creating a fundamental trade-off between portability and performance. To mitigate such limitation, we propose MuseCogNet (Muse-based Cognitive Network), a unified joint learning framework integrating self-supervised and supervised training paradigms. In particular, we introduce an EEG-grounded self-supervised reconstruction loss based on average pooling to capture robust neurophysiological patterns, while cross-entropy loss refines task-specific cognitive discriminants. This joint learning framework resembles the bottom-up and top-down attention in humans, enabling MuseCogNet to significantly outperform state-of-the-art methods on a publicly available Muse dataset and establish an implementable pathway for neurocognitive monitoring in ecological settings.
- Abstract(参考訳): Museヘッドバンドのようなポータブルでウェアラブルなコンシューマグレードの脳波(EEG)デバイスは、認知負荷検出を含む毎日の脳-コンピュータインターフェース(BCI)アプリケーションに前例のないモビリティを提供する。
しかし、携帯型脳波信号の非定常性の悪化はデータの忠実さと復号精度を制約し、ポータビリティと性能の基本的なトレードオフを生み出す。
このような制限を緩和するために,自己指導と教師付きトレーニングパラダイムを統合した統合学習フレームワークであるMuseCogNet(Muse-based Cognitive Network)を提案する。
特に,脳波をベースとした自己教師型再建障害を導入し,強靭な神経生理学的パターンを捉える一方,クロスエントロピー損失はタスク固有の認知的差別を洗練させる。
この共同学習フレームワークは、人間のボトムアップとトップダウンの注目に似ており、MuseCogNetは一般公開されているMuseデータセット上で最先端の手法を大幅に上回り、生態学的環境下での神経認知モニタリングのための実装可能な経路を確立することができる。
関連論文リスト
- Zero-Shot EEG-to-Gait Decoding via Phase-Aware Representation Learning [9.49131859415923]
ドメイン一般化型脳波-モーションデコーディングフレームワークであるNeuroDyGaitを提案する。
構造化されたコントラスト表現学習とリレーショナルドメインモデリングを使用して、脳波とモーション埋め込みのセマンティックアライメントを実現する。
ベンチマークデータセットのクロスオブジェクト歩行復号における適応や優れた性能を必要とせずに、見えない個人に対するゼロショットモーション予測を実現する。
論文 参考訳(メタデータ) (2025-06-24T06:03:49Z) - Brain2Vec: A Deep Learning Framework for EEG-Based Stress Detection Using CNN-LSTM-Attention [0.0]
Brain2Vecは、生の脳波記録からストレス状態を分類する新しいディープラーニングツールだ。
これらの結果は、Brain2Vecがウェアラブルストレス監視プラットフォームとパーソナライズされたヘルスケアシステムに統合される可能性を示している。
論文 参考訳(メタデータ) (2025-06-12T12:57:19Z) - Meta-Representational Predictive Coding: Biomimetic Self-Supervised Learning [51.22185316175418]
メタ表現予測符号化(MPC)と呼ばれる新しい予測符号化方式を提案する。
MPCは、並列ストリームにまたがる感覚入力の表現を予測することを学ぶことによって、感覚入力の生成モデルを学ぶ必要性を助長する。
論文 参考訳(メタデータ) (2025-03-22T22:13:14Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification [5.563162319586206]
機能的接続(FC)を用いた脳コネクトーム分類におけるパターン認識手法の最近の応用は、時間とともに脳コネクトームの認知的側面へとシフトしている。
本稿では,ヒトの自閉症スペクトラム障害(ASD)を同定するために,非時間変動ベイズフレームワークを提案する。
このフレームワークは、動的FCネットワークをまたいだリッチテンポラルパターンをキャプチャするための注意に基づくメッセージパッシングスキームを備えた、空間認識リカレントニューラルネットワークを組み込んでいる。
論文 参考訳(メタデータ) (2023-02-14T18:42:17Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
イベントベース3要素局所塑性(ETLP)の計算複雑性に明らかな優位性を有する精度の競争性能を示す。
また, 局所的可塑性を用いた場合, スパイキングニューロンの閾値適応, 繰り返しトポロジーは, 時間的構造が豊富な時間的パターンを学習するために必要であることを示した。
論文 参考訳(メタデータ) (2023-01-19T19:45:42Z) - EEG-NeXt: A Modernized ConvNet for The Classification of Cognitive
Activity from EEG [0.0]
脳波(EEG)に基づく脳-コンピュータインタフェース(BCI)システムにおける大きな課題の1つは、認知活動の分類のために主題/セッション不変の特徴を学習することである。
転送学習を容易にする新しいエンドツーエンド機械学習パイプラインであるEEG-NeXtを提案する。
論文 参考訳(メタデータ) (2022-12-08T10:15:52Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。