Test of partial effects for Frechet regression on Bures-Wasserstein manifolds
- URL: http://arxiv.org/abs/2506.23487v1
- Date: Mon, 30 Jun 2025 03:20:05 GMT
- Title: Test of partial effects for Frechet regression on Bures-Wasserstein manifolds
- Authors: Haoshu Xu, Hongzhe Li,
- Abstract summary: We propose a novel test for assessing partial effects in Frechet regression.<n>We prove that this statistic converges in distribution to a weighted mixture of chi squared components.<n>We show that our procedure achieves the nominal size and demonstrate that its worst-case power converges uniformly to one.
- Score: 0.9514940899499753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel test for assessing partial effects in Frechet regression on Bures Wasserstein manifolds. Our approach employs a sample splitting strategy: the first subsample is used to fit the Frechet regression model, yielding estimates of the covariance matrices and their associated optimal transport maps, while the second subsample is used to construct the test statistic. We prove that this statistic converges in distribution to a weighted mixture of chi squared components, where the weights correspond to the eigenvalues of an integral operator defined by an appropriate RKHS kernel. We establish that our procedure achieves the nominal asymptotic size and demonstrate that its worst-case power converges uniformly to one. Through extensive simulations and a real data application, we illustrate the test's finite-sample accuracy and practical utility.
Related papers
- Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
We investigate the behavior of a general class of regularized convex classifiers in the high-dimensional limit.
Our focus is on the generalization error and variable selection properties of the estimators.
arXiv Detail & Related papers (2024-10-25T19:58:36Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.<n>We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.<n>This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.<n>For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.<n>We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Doubly Robust Inference in Causal Latent Factor Models [12.116813197164047]
This article introduces a new estimator of average treatment effects under unobserved confounding in modern data-rich environments featuring large numbers of units and outcomes.
We derive finite-sample weighting and guarantees, and show that the error of the new estimator converges to a mean-zero Gaussian distribution at a parametric rate.
arXiv Detail & Related papers (2024-02-18T17:13:46Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Classification of Heavy-tailed Features in High Dimensions: a
Superstatistical Approach [1.4469725791865984]
We characterise the learning of a mixture of two clouds of data points with generic centroids.
We study the generalisation performance of the obtained estimator, we analyse the role of regularisation, and we analytically the separability transition.
arXiv Detail & Related papers (2023-04-06T07:53:05Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
We propose a novel random forest weighted local Fr'echet regression paradigm.<n>Our first method uses these weights as the local average to solve the conditional Fr'echet mean.<n>Second method performs local linear Fr'echet regression, both significantly improving existing Fr'echet regression methods.
arXiv Detail & Related papers (2022-02-10T09:10:59Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric [0.0]
We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line.
We focus in particular on Principal Component Analysis (PCA) and regression.
Several theoretical properties of the models are investigated and consistency is proven.
arXiv Detail & Related papers (2021-01-22T10:24:49Z) - Reweighting samples under covariate shift using a Wasserstein distance
criterion [0.0]
We study an optimal reweighting that minimizes the Wasserstein distance between the empirical measures of the two samples.
The consistency and some convergence rates in terms of expected Wasserstein distance are derived.
These results have some application in Uncertainty Quantification for decoupled estimation and in the bound of the generalization error for the Nearest Neighbor Regression.
arXiv Detail & Related papers (2020-10-19T07:23:55Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.