ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data
- URL: http://arxiv.org/abs/2506.23520v1
- Date: Mon, 30 Jun 2025 05:11:19 GMT
- Title: ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data
- Authors: Yu Zhang, Ruijie Yu, Jidong Tian, Feng Zhu, Jiapeng Liu, Xiaokang Yang, Yaohui Jin, Yanyan Xu,
- Abstract summary: We present ChemActor, a fully fine-tuned large language model (LLM) as a chemical executor to convert between unstructured experimental procedures and structured action sequences.<n>This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input.<n>Experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor achieves state-of-the-art performance, outperforming the baseline model by 10%.
- Score: 53.78763789036172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing interest in robotic synthesis in the context of organic chemistry, the automated extraction of chemical procedures from literature is critical. However, this task remains challenging due to the inherent ambiguity of chemical language and the high cost of human annotation required for developing reliable computer-aided extraction protocols. Here, we present ChemActor, a fully fine-tuned large language model (LLM), as a chemical executor to convert between unstructured experimental procedures and structured action sequences. We propose a sequential LLM-generated data framework to address the challenges of insufficient and low-quality annotated data. This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input. Additionally, we introduce a novel multi-round LLMs circle review metric, which reflects the model's advanced understanding of chemical experimental procedures. Extensive experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor, augmented by LLM-generated data, achieves state-of-the-art performance, outperforming the baseline model by 10%. The code is available at: https://github.com/Zhanghahah/ChemActor.
Related papers
- A Multi-Agent System Enables Versatile Information Extraction from the Chemical Literature [8.306442315850878]
We develop a multimodal large language model (MLLM)-based multi-agent system for robust and automated chemical information extraction.<n>Our system achieved an F1 score of 80.8% on a benchmark dataset of sophisticated multimodal chemical reaction graphics from the literature.
arXiv Detail & Related papers (2025-07-27T11:16:57Z) - CheMatAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning [12.745398618084474]
Large language models (LLMs) have recently demonstrated promising capabilities in chemistry tasks.<n>We propose an LLM-based agent that integrates 137 external chemical tools created ranging from basic information retrieval to complex reaction predictions.
arXiv Detail & Related papers (2025-06-09T08:41:39Z) - ChemAgent: Self-updating Library in Large Language Models Improves Chemical Reasoning [64.2106664137118]
ChemAgent is a novel framework designed to improve the performance of large language models (LLMs)<n>It is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries.<n>When presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory.
arXiv Detail & Related papers (2025-01-11T17:10:30Z) - Validation of the Scientific Literature via Chemputation Augmented by Large Language Models [0.0]
Chemputation is the process of programming chemical robots to do experiments using a universal symbolic language, but the literature can be error prone and hard to read due to ambiguities.
Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, including natural language processing, robotic control, and more recently, chemistry.
We introduce an LLM-based chemical research agent workflow designed for the automatic validation of synthetic literature procedures.
arXiv Detail & Related papers (2024-10-08T21:31:42Z) - Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation [50.639325453203504]
MM-RCR is a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR)
Our results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets.
arXiv Detail & Related papers (2024-07-21T12:27:26Z) - ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining [56.15126714863963]
ChemMiner is an end-to-end framework for extracting chemical data from literature.<n>ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation.<n> Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.<n>The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.<n>Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.