Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound
- URL: http://arxiv.org/abs/2506.23538v1
- Date: Mon, 30 Jun 2025 06:07:41 GMT
- Title: Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound
- Authors: Yuhao Huang, Yueyue Xu, Haoran Dou, Jiaxiao Deng, Xin Yang, Hongyu Zheng, Dong Ni,
- Abstract summary: Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications.<n>In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis.
- Score: 9.997984970090954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
Related papers
- A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision [65.33043028101471]
We introduce a diffusion model for Gaussian Splats, SplatDiffusion, to enable generation of three-dimensional structures from single images.<n>Existing methods rely on deterministic, feed-forward predictions, which limit their ability to handle the inherent ambiguity of 3D inference from 2D data.
arXiv Detail & Related papers (2024-12-01T00:29:57Z) - Reliable Multi-View Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography [6.540741143328299]
The acquired images are often 2-D cross-sections of a 3-D anatomy, potentially missing important anatomical details.
We propose Re-Training for Uncertainty (RT4U), a data-centric method to introduce uncertainty to weakly informative inputs in the training set.
When combined with conformal prediction techniques, RT4U can yield adaptively sized prediction sets which are guaranteed to contain the ground truth class to a high accuracy.
arXiv Detail & Related papers (2024-09-15T10:06:06Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Ultrasound Plane Pose Regression: Assessing Generalized Pose Coordinates
in the Fetal Brain [9.465965149145559]
We aim to build a US plane localization system for 3D visualization, training, and guidance without integrating additional sensors.
This work builds on our previous work, which predicts the six-dimensional (6D) pose of arbitrarily oriented US planes slicing the fetal brain.
We investigate the impact of registration quality in the training and testing data and its subsequent effect on trained models.
arXiv Detail & Related papers (2023-01-19T21:16:36Z) - Agent with Tangent-based Formulation and Anatomical Perception for
Standard Plane Localization in 3D Ultrasound [56.7645826576439]
We introduce a novel reinforcement learning framework for automatic SP localization in 3D US.
First, we formulate SP localization in 3D US as a tangent-point-based problem in RL to restructure the action space.
Second, we design an auxiliary task learning strategy to enhance the model's ability to recognize subtle differences crossing Non-SPs and SPs in plane search.
arXiv Detail & Related papers (2022-07-01T14:53:27Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound
Reconstruction [61.62191904755521]
3D freehand US reconstruction is promising in addressing the problem by providing broad range and freeform scan.
Existing deep learning based methods only focus on the basic cases of skill sequences.
We propose a novel approach to sensorless freehand 3D US reconstruction considering the complex skill sequences.
arXiv Detail & Related papers (2021-07-31T16:06:50Z) - Searching Collaborative Agents for Multi-plane Localization in 3D
Ultrasound [15.573821037925143]
3D ultrasound can contain multiple standard planes (SPs) in one shot.
Manual SP localization in 3D US is challenging because of the low image quality, huge search space and large anatomical variability.
We propose a novel multi-agent reinforcement learning framework to simultaneously localize multiple SPs in 3D US.
arXiv Detail & Related papers (2021-05-22T02:48:23Z) - Searching Collaborative Agents for Multi-plane Localization in 3D
Ultrasound [59.97366727654676]
3D ultrasound (US) is widely used due to its rich diagnostic information, portability and low cost.
Standard plane (SP) localization in US volume not only improves efficiency and reduces user-dependence, but also boosts 3D US interpretation.
We propose a novel Multi-Agent Reinforcement Learning framework to localize multiple uterine SPs in 3D US simultaneously.
arXiv Detail & Related papers (2020-07-30T07:23:55Z) - Agent with Warm Start and Active Termination for Plane Localization in
3D Ultrasound [56.14006424500334]
Standard plane localization is crucial for ultrasound (US) diagnosis.
In prenatal US, dozens of standard planes are manually acquired with a 2D probe.
We propose a novel reinforcement learning framework to automatically localize fetal brain standard planes in 3D US.
arXiv Detail & Related papers (2019-10-10T02:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.