Partial Forward Blocking: A Novel Data Pruning Paradigm for Lossless Training Acceleration
- URL: http://arxiv.org/abs/2506.23674v1
- Date: Mon, 30 Jun 2025 09:53:26 GMT
- Title: Partial Forward Blocking: A Novel Data Pruning Paradigm for Lossless Training Acceleration
- Authors: Dongyue Wu, Zilin Guo, Jialong Zuo, Nong Sang, Changxin Gao,
- Abstract summary: Existing data pruning approaches aim to accelerate training by removing those less important samples.<n>We propose Partial Forward Blocking (PFB), a novel framework for lossless training acceleration.<n>PFB significantly reduces the computational overhead of deep-layer forward passes and back-propagation for pruned samples.<n>On ImageNet, PFB achieves a 0.5% accuracy improvement and 33% training time reduction with 40% data pruned.
- Score: 32.21701911161334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ever-growing size of training datasets enhances the generalization capability of modern machine learning models but also incurs exorbitant computational costs. Existing data pruning approaches aim to accelerate training by removing those less important samples. However, they often rely on gradients or proxy models, leading to prohibitive additional costs of gradient back-propagation and proxy model training. In this paper, we propose Partial Forward Blocking (PFB), a novel framework for lossless training acceleration. The efficiency of PFB stems from its unique adaptive pruning pipeline: sample importance is assessed based on features extracted from the shallow layers of the target model. Less important samples are then pruned, allowing only the retained ones to proceed with the subsequent forward pass and loss back-propagation. This mechanism significantly reduces the computational overhead of deep-layer forward passes and back-propagation for pruned samples, while also eliminating the need for auxiliary backward computations and proxy model training. Moreover, PFB introduces probability density as an indicator of sample importance. Combined with an adaptive distribution estimation module, our method dynamically prioritizes relatively rare samples, aligning with the constantly evolving training state. Extensive experiments demonstrate the significant superiority of PFB in performance and speed. On ImageNet, PFB achieves a 0.5% accuracy improvement and 33% training time reduction with 40% data pruned.
Related papers
- Instance-dependent Early Stopping [57.912273923450726]
We propose an Instance-dependent Early Stopping (IES) method that adapts the early stopping mechanism from the entire training set to the instance level.<n>IES considers an instance as mastered if the second-order differences of its loss value remain within a small range around zero.<n>IES can reduce backpropagation instances by 10%-50% while maintaining or even slightly improving the test accuracy and transfer learning performance of a model.
arXiv Detail & Related papers (2025-02-11T13:34:09Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
We present the first systematic exploration of optimal sparse pre-training configurations for large language models.<n>We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss.<n>We propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training.
arXiv Detail & Related papers (2025-01-21T20:23:22Z) - Stepping Forward on the Last Mile [8.756033984943178]
We propose a series of algorithm enhancements that further reduce the memory footprint, and the accuracy gap compared to backpropagation.
Our results demonstrate that on the last mile of model customization on edge devices, training with fixed-point forward gradients is a feasible and practical approach.
arXiv Detail & Related papers (2024-11-06T16:33:21Z) - Beyond Efficiency: Molecular Data Pruning for Enhanced Generalization [30.738229850748137]
MolPeg is a Molecular data Pruning framework for enhanced Generalization.
It focuses on the source-free data pruning scenario, where data pruning is applied with pretrained models.
It consistently outperforms existing DP methods across four downstream tasks.
arXiv Detail & Related papers (2024-09-02T09:06:04Z) - PUMA: margin-based data pruning [51.12154122266251]
We focus on data pruning, where some training samples are removed based on the distance to the model classification boundary (i.e., margin)
We propose PUMA, a new data pruning strategy that computes the margin using DeepFool.
We show that PUMA can be used on top of the current state-of-the-art methodology in robustness, and it is able to significantly improve the model performance unlike the existing data pruning strategies.
arXiv Detail & Related papers (2024-05-10T08:02:20Z) - Online Importance Sampling for Stochastic Gradient Optimization [33.42221341526944]
We propose a practical algorithm that efficiently computes data importance on-the-fly during training.<n>We also introduce a novel metric based on the derivative of the loss w.r.t. the network output, designed for mini-batch importance sampling.
arXiv Detail & Related papers (2023-11-24T13:21:35Z) - PaReprop: Fast Parallelized Reversible Backpropagation [6.901732343162485]
Reversible transformers have been introduced as an exciting new method for extremely memory-efficient training.
They come with an additional computation overhead of activation re-computation in the backpropagation phase.
We present PaReprop, a fast Parallelized Reversible Backpropagation algorithm.
arXiv Detail & Related papers (2023-06-15T17:59:32Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Predicting Training Time Without Training [120.92623395389255]
We tackle the problem of predicting the number of optimization steps that a pre-trained deep network needs to converge to a given value of the loss function.
We leverage the fact that the training dynamics of a deep network during fine-tuning are well approximated by those of a linearized model.
We are able to predict the time it takes to fine-tune a model to a given loss without having to perform any training.
arXiv Detail & Related papers (2020-08-28T04:29:54Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.