A New Perspective On AI Safety Through Control Theory Methodologies
- URL: http://arxiv.org/abs/2506.23703v1
- Date: Mon, 30 Jun 2025 10:26:59 GMT
- Title: A New Perspective On AI Safety Through Control Theory Methodologies
- Authors: Lars Ullrich, Walter Zimmer, Ross Greer, Knut Graichen, Alois C. Knoll, Mohan Trivedi,
- Abstract summary: AI promises to achieve a new level of autonomy but is hampered by a lack of safety assurance.<n>This article outlines a new perspective on AI safety based on an interdisciplinary interpretation of the underlying data-generation process.<n>The new perspective, also referred to as data control, aims to stimulate AI engineering to take advantage of existing safety analysis and assurance.
- Score: 16.51699616065134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While artificial intelligence (AI) is advancing rapidly and mastering increasingly complex problems with astonishing performance, the safety assurance of such systems is a major concern. Particularly in the context of safety-critical, real-world cyber-physical systems, AI promises to achieve a new level of autonomy but is hampered by a lack of safety assurance. While data-driven control takes up recent developments in AI to improve control systems, control theory in general could be leveraged to improve AI safety. Therefore, this article outlines a new perspective on AI safety based on an interdisciplinary interpretation of the underlying data-generation process and the respective abstraction by AI systems in a system theory-inspired and system analysis-driven manner. In this context, the new perspective, also referred to as data control, aims to stimulate AI engineering to take advantage of existing safety analysis and assurance in an interdisciplinary way to drive the paradigm of data control. Following a top-down approach, a generic foundation for safety analysis and assurance is outlined at an abstract level that can be refined for specific AI systems and applications and is prepared for future innovation.
Related papers
- Report on NSF Workshop on Science of Safe AI [75.96202715567088]
New advances in machine learning are leading to new opportunities to develop technology-based solutions to societal problems.<n>To fulfill the promise of AI, we must address how to develop AI-based systems that are accurate and performant but also safe and trustworthy.<n>This report is the result of the discussions in the working groups that addressed different aspects of safety at the workshop.
arXiv Detail & Related papers (2025-06-24T18:55:29Z) - Decoding the Black Box: Integrating Moral Imagination with Technical AI Governance [0.0]
We develop a comprehensive framework designed to regulate AI technologies deployed in high-stakes domains such as defense, finance, healthcare, and education.<n>Our approach combines rigorous technical analysis, quantitative risk assessment, and normative evaluation to expose systemic vulnerabilities.
arXiv Detail & Related papers (2025-03-09T03:11:32Z) - Position: Mind the Gap-the Growing Disconnect Between Established Vulnerability Disclosure and AI Security [56.219994752894294]
We argue that adapting existing processes for AI security reporting is doomed to fail due to fundamental shortcomings for the distinctive characteristics of AI systems.<n>Based on our proposal to address these shortcomings, we discuss an approach to AI security reporting and how the new AI paradigm, AI agents, will further reinforce the need for specialized AI security incident reporting advancements.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - Landscape of AI safety concerns -- A methodology to support safety assurance for AI-based autonomous systems [0.0]
AI has emerged as a key technology, driving advancements across a range of applications.<n>The challenge of assuring safety in systems that incorporate AI components is substantial.<n>We propose a novel methodology designed to support the creation of safety assurance cases for AI-based systems.
arXiv Detail & Related papers (2024-12-18T16:38:16Z) - From Silos to Systems: Process-Oriented Hazard Analysis for AI Systems [2.226040060318401]
We translate System Theoretic Process Analysis (STPA) for analyzing AI operation and development processes.
We focus on systems that rely on machine learning algorithms and conductedA on three case studies.
We find that key concepts and steps of conducting anA readily apply, albeit with a few adaptations tailored for AI systems.
arXiv Detail & Related papers (2024-10-29T20:43:18Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - System Safety and Artificial Intelligence [0.0]
New applications of AI across societal domains come with new hazards.
The field of system safety has dealt with accidents and harm in safety-critical systems.
This chapter honors system safety pioneer Nancy Leveson.
arXiv Detail & Related papers (2022-02-18T16:37:54Z) - Safe AI -- How is this Possible? [0.45687771576879593]
Traditional safety engineering is coming to a turning point moving from deterministic, non-evolving systems operating in well-defined contexts to increasingly autonomous and learning-enabled AI systems acting in largely unpredictable operating contexts.
We outline some of underlying challenges of safe AI and suggest a rigorous engineering framework for minimizing uncertainty, thereby increasing confidence, up to tolerable levels, in the safe behavior of AI systems.
arXiv Detail & Related papers (2022-01-25T16:32:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.