Safe AI -- How is this Possible?
- URL: http://arxiv.org/abs/2201.10436v1
- Date: Tue, 25 Jan 2022 16:32:35 GMT
- Title: Safe AI -- How is this Possible?
- Authors: Harald Rue{\ss}, Simon Burton
- Abstract summary: Traditional safety engineering is coming to a turning point moving from deterministic, non-evolving systems operating in well-defined contexts to increasingly autonomous and learning-enabled AI systems acting in largely unpredictable operating contexts.
We outline some of underlying challenges of safe AI and suggest a rigorous engineering framework for minimizing uncertainty, thereby increasing confidence, up to tolerable levels, in the safe behavior of AI systems.
- Score: 0.45687771576879593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ttraditional safety engineering is coming to a turning point moving from
deterministic, non-evolving systems operating in well-defined contexts to
increasingly autonomous and learning-enabled AI systems which are acting in
largely unpredictable operating contexts. We outline some of underlying
challenges of safe AI and suggest a rigorous engineering framework for
minimizing uncertainty, thereby increasing confidence, up to tolerable levels,
in the safe behavior of AI systems.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - SafeEmbodAI: a Safety Framework for Mobile Robots in Embodied AI Systems [5.055705635181593]
Embodied AI systems, including AI-powered robots that autonomously interact with the physical world, stand to be significantly advanced.
Improper safety management can lead to failures in complex environments and make the system vulnerable to malicious command injections.
We propose textitSafeEmbodAI, a safety framework for integrating mobile robots into embodied AI systems.
arXiv Detail & Related papers (2024-09-03T05:56:50Z) - Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [14.150792596344674]
AI Safety is an emerging area of critical importance to the safe adoption and deployment of AI systems.
Our goal is to promote advancement in AI safety research, and ultimately enhance people's trust in digital transformation.
arXiv Detail & Related papers (2024-08-23T09:33:48Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
We propose an empirical foundation for developing more meaningful safety metrics and define AI safety in a machine learning research context.
We aim to provide a more rigorous framework for AI safety research, advancing the science of safety evaluations and clarifying the path towards measurable progress.
arXiv Detail & Related papers (2024-07-31T17:59:24Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Concrete Problems in AI Safety, Revisited [1.4089652912597792]
As AI systems proliferate in society, the AI community is increasingly preoccupied with the concept of AI Safety.
We demonstrate through an analysis of real world cases of such incidents that although current vocabulary captures a range of the encountered issues of AI deployment, an expanded socio-technical framing will be required.
arXiv Detail & Related papers (2023-12-18T23:38:05Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - On Safety Assessment of Artificial Intelligence [0.0]
We show that many models of artificial intelligence, in particular machine learning, are statistical models.
Part of the budget of dangerous random failures for the relevant safety integrity level needs to be used for the probabilistic faulty behavior of the AI system.
We propose a research challenge that may be decisive for the use of AI in safety related systems.
arXiv Detail & Related papers (2020-02-29T14:05:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.