論文の概要: Single Image Test-Time Adaptation via Multi-View Co-Training
- arxiv url: http://arxiv.org/abs/2506.23705v1
- Date: Mon, 30 Jun 2025 10:29:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:54.018115
- Title: Single Image Test-Time Adaptation via Multi-View Co-Training
- Title(参考訳): マルチビューコトレーニングによる単眼テスト時間適応
- Authors: Smriti Joshi, Richard Osuala, Lidia Garrucho, Kaisar Kushibar, Dimitri Kessler, Oliver Diaz, Karim Lekadir,
- Abstract要約: 単一画像テスト時間適応のためのパッチベースのマルチビュー協調学習手法を提案する。
本手法は,不確実性誘導自己学習による特徴と予測整合性を実現する。
提案手法は,上界教師付きベンチマークに近い性能を実現する。
- 参考スコア(独自算出の注目度): 1.73329304643509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-time adaptation enables a trained model to adjust to a new domain during inference, making it particularly valuable in clinical settings where such on-the-fly adaptation is required. However, existing techniques depend on large target domain datasets, which are often impractical and unavailable in medical scenarios that demand per-patient, real-time inference. Moreover, current methods commonly focus on two-dimensional images, failing to leverage the volumetric richness of medical imaging data. Bridging this gap, we propose a Patch-Based Multi-View Co-Training method for Single Image Test-Time adaptation. Our method enforces feature and prediction consistency through uncertainty-guided self-training, enabling effective volumetric segmentation in the target domain with only a single test-time image. Validated on three publicly available breast magnetic resonance imaging datasets for tumor segmentation, our method achieves performance close to the upper bound supervised benchmark while also outperforming all existing state-of-the-art methods, on average by a Dice Similarity Coefficient of 3.75%. We publicly share our accessible codebase, readily integrable with the popular nnUNet framework, at https://github.com/smriti-joshi/muvi.git.
- Abstract(参考訳): テストタイム適応は、トレーニングされたモデルが推論中に新しいドメインに適応できるようにし、オンザフライ適応が必要な臨床環境で特に有用である。
しかし、既存のテクニックは大きなターゲットドメインデータセットに依存しており、多くの場合、患者毎のリアルタイム推論を必要とする医療シナリオでは非現実的であり、利用できない。
さらに、現在の手法は2次元画像に重点を置いており、医用画像データの量的豊かさを生かしていない。
このギャップを埋めて、単画像テスト時間適応のためのパッチベースのマルチビュー協調訓練法を提案する。
提案手法は,不確実性誘導型自己学習による特徴と予測整合性を実現し,単一のテストタイム画像のみを用いて,対象領域における効果的なボリュームセグメンテーションを実現する。
腫瘍セグメント化のための胸部MRI画像データセットを3つ公開し, 上界教師付きベンチマークに近づき, 既存手法を平均3.75%で比較した。
私たちはアクセス可能なコードベースを公開し、人気の高いnnUNetフレームワークと簡単に統合できます。
関連論文リスト
- Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation [17.49123106322442]
テスト時間適応(TTA)は、未ラベルのテストデータを用いて学習モデルを調整する。
形態情報を導入し,マルチグラフマッチングに基づくフレームワークを提案する。
本手法は,2つの医用画像セグメンテーションベンチマークにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2025-03-17T10:11:11Z) - Trustworthy image-to-image translation: evaluating uncertainty calibration in unpaired training scenarios [0.0]
マンモグラフィスクリーニングは乳がんの検出に有効な方法であり、早期診断を容易にする。
ディープニューラルネットワークはいくつかの研究で有効であることが示されているが、その傾向は一般化と誤診のリスクをかなり残している。
汎用性を向上させるために、未ペア型ニューラルスタイル転送モデルに基づくデータ拡張スキームが提案されている。
3つのオープンアクセスマンモグラフィーデータセットと1つの非医療画像データセットから解析した画像パッチを用いて、それらの性能を評価する。
論文 参考訳(メタデータ) (2025-01-29T11:09:50Z) - Data Adaptive Few-shot Multi Label Segmentation with Foundation Model [0.0]
数発のセグメンテーションのための最先端の手法は、医療画像の準最適性能に悩まされている。
単一ラベル,多ラベルローカライゼーション,セグメンテーションのための基礎モデル (FM) ベースのアダプタを提案する。
論文 参考訳(メタデータ) (2024-10-13T07:29:13Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Medical Image Segmentation with InTEnt: Integrated Entropy Weighting for
Single Image Test-Time Adaptation [6.964589353845092]
テスト時間適応(TTA)とは、テスト中にトレーニングされたモデルを新しいドメインに適応させることである。
そこで本研究では,単一の未ラベルテスト画像のみを用いて,医用画像分割モデルを適用することを提案する。
提案手法は, 平均2.9%のDice係数で, 3つの医用画像データセットにまたがる24のソース/ターゲット領域に分割して検証した。
論文 参考訳(メタデータ) (2024-02-14T22:26:07Z) - DG-TTA: Out-of-domain Medical Image Segmentation through Augmentation and Descriptor-driven Domain Generalization and Test-Time Adaptation [43.842694540544194]
ドメイン外の画像に事前訓練された深層学習セグメンテーションモデルを適用すると、品質の不足を予測できる。
本研究では、拡張とともに強力な一般化記述子を用いて、ドメイン一般化事前学習とテスト時間適応を実現することを提案する。
論文 参考訳(メタデータ) (2023-12-11T10:26:21Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Toward Unpaired Multi-modal Medical Image Segmentation via Learning
Structured Semantic Consistency [24.78258331561847]
本稿では,異なるモダリティの相互利益を学習し,不自由な医療画像に対してより良いセグメンテーション結果を得るための新しい手法を提案する。
我々は、慎重に設計された外部注意モジュール(EAM)を利用して、セマンティッククラス表現とそれらの異なるモダリティの相関を調整します。
提案手法の有効性を2つの医療画像セグメンテーションシナリオで実証した。
論文 参考訳(メタデータ) (2022-06-21T17:50:29Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
ソースモデルをテスト時にターゲットデータに適応させることは、データシフト問題に対する効率的な解決策である。
本稿では、各畳み込みブロックに適応バッチ正規化層を設けるAdaptive UNetという新しいフレームワークを提案する。
テスト期間中、モデルは新しいテストイメージのみを取り込み、ドメインコードを生成して、テストデータに従ってソースモデルの特徴を適応させる。
論文 参考訳(メタデータ) (2022-03-10T18:51:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。