論文の概要: System-Embedded Diffusion Bridge Models
- arxiv url: http://arxiv.org/abs/2506.23726v1
- Date: Mon, 30 Jun 2025 10:58:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:54.028275
- Title: System-Embedded Diffusion Bridge Models
- Title(参考訳): システム埋め込み拡散ブリッジモデル
- Authors: Bartlomiej Sobieski, Matthew Tivnan, Yuang Wang, Siyeop Yoon, Pengfei Jin, Dufan Wu, Quanzheng Li, Przemyslaw Biecek,
- Abstract要約: システム組み込み拡散ブリッジモデル(SDB)について紹介する。
SDBは、既知の線形測定システムを一般化行列値SDEの係数に埋め込む。
この原理的な積分は、様々な線形逆問題に対して一貫した改善をもたらす。
- 参考スコア(独自算出の注目度): 12.103113408680587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving inverse problems -- recovering signals from incomplete or noisy measurements -- is fundamental in science and engineering. Score-based generative models (SGMs) have recently emerged as a powerful framework for this task. Two main paradigms have formed: unsupervised approaches that adapt pretrained generative models to inverse problems, and supervised bridge methods that train stochastic processes conditioned on paired clean and corrupted data. While the former typically assume knowledge of the measurement model, the latter have largely overlooked this structural information. We introduce System embedded Diffusion Bridge Models (SDBs), a new class of supervised bridge methods that explicitly embed the known linear measurement system into the coefficients of a matrix-valued SDE. This principled integration yields consistent improvements across diverse linear inverse problems and demonstrates robust generalization under system misspecification between training and deployment, offering a promising solution to real-world applications.
- Abstract(参考訳): 逆問題(不完全またはノイズのある測定から信号を回収する)を解決することは、科学と工学において基礎となる。
スコアベース生成モデル(SGM)はこのタスクの強力なフレームワークとして最近登場した。
2つの主要なパラダイムは、事前学習された生成モデルを逆問題に適用する教師なしアプローチと、ペア化されたクリーンデータと破損したデータに条件付けされた確率過程を訓練する教師なしブリッジ手法である。
前者は一般的に測定モデルの知識を仮定するが、後者はこの構造情報をほとんど見落としている。
行列値SDEの係数に、既知の線形測定系を明示的に埋め込む新しい教師付きブリッジ法である、システム埋め込み拡散ブリッジモデル(SDB)を紹介する。
この原則による統合は、様々な線形逆問題に対して一貫した改善をもたらし、トレーニングとデプロイメントの間のシステムの不特定性の下で堅牢な一般化を実証し、現実のアプリケーションに対して有望なソリューションを提供する。
関連論文リスト
- An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models [86.05414211113627]
システム識別の問題に取り組み、入力を選択し、実際のシステムから対応する出力を観測し、データに最も合うようにモデルのパラメータを最適化する。
本稿では,任意のシステムやパラメトリックモデルと互換性のある,フレキシブルで計算可能な手法を提案する。
論文 参考訳(メタデータ) (2025-01-28T01:57:51Z) - Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space [72.52365911990935]
本稿では,MDPの線形性を維持する新しいDGMフレームワークであるBellman Diffusionを紹介する。
この結果から,ベルマン拡散は分布RLタスクにおける従来のヒストグラムベースベースラインよりも1.5倍高速に収束し,精度の高い画像生成装置であることがわかった。
論文 参考訳(メタデータ) (2024-10-02T17:53:23Z) - CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
我々は, 高い復元品質を維持しつつ, 推論ステップの境界を1-2 NFEに推し進めることを提案する。
本手法は拡散型逆問題解法における新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-07-17T15:57:50Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
モデルベースアーキテクチャでは,各インスタンスの計測領域におけるデータの一貫性を一致させるために,トレーニングされていないフォワードモデル残差ブロックを導入する。
提案手法は,パラメータ感受性が低く,追加データを必要としない統一解を提供し,前方モデルの同時適用と1パスの再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-07T19:02:13Z) - Joint Problems in Learning Multiple Dynamical Systems [7.8346400637756535]
時系列のクラスタリングはよく研究されている問題であり、代謝物濃度から得られる代謝の定量的にパーソナライズされたモデルから、量子情報理論における状態判別まで幅広い応用がある。
我々は,一組のトラジェクトリと複数のパーツを与えられた場合,各パーツのトラジェクトリと線形力学系(LDS)モデルを共同で分割し,全てのモデルにおける最大誤差を最小化するために検討する。
本稿では,グローバル収束法とEMを,有望な計算結果とともに提示する。
論文 参考訳(メタデータ) (2023-11-03T18:16:00Z) - GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse
Problems with Denoising Diffusion Restoration [64.8770356696056]
本稿では,DDRM(Denoising Diffusion Restoration Models)の拡張であるGibbsDDRMを提案する。
提案手法は問題に依存しないため,様々な逆問題に対して事前学習した拡散モデルを適用することができる。
論文 参考訳(メタデータ) (2023-01-30T06:27:48Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
複雑/マルチスケールシステムの集合力学を制御するための方程式/変数自由機械学習(EVFML)フレームワークを提案する。
提案手法は3段階からなる: (A) 高次元エージェントベースシミュレーション、機械学習(特に非線形多様体学習(DM))
創発力学の数値分岐解析を行うために方程式のない手法を用いる。
我々は,エージェントをベースとしたシミュレータを本質的で不正確に知られ,創発的なオープンループ定常状態に駆動する,データ駆動型組込み洗浄制御器を設計する。
論文 参考訳(メタデータ) (2022-07-12T18:16:22Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。