KAIROS: Scalable Model-Agnostic Data Valuation
- URL: http://arxiv.org/abs/2506.23799v2
- Date: Wed, 02 Jul 2025 22:50:21 GMT
- Title: KAIROS: Scalable Model-Agnostic Data Valuation
- Authors: Jiongli Zhu, Parjanya Prajakta Prashant, Alex Cloninger, Babak Salimi,
- Abstract summary: KAIROS is a scalable, model-agnostic valuation framework that assigns each example a distributional influence score.<n> KAIROS consistently outperforms state-of-the-art model-, Shapley-, and Wasserstein-based baselines in both accuracy and runtime.
- Score: 8.766103946679435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training data increasingly shapes not only model accuracy but also regulatory compliance and market valuation of AI assets. Yet existing valuation methods remain inadequate: model-based techniques depend on a single fitted model and inherit its biases, while algorithm-based approaches such as Data Shapley require costly retrainings at web scale. Recent Wasserstein-based model-agnostic methods rely on approximations that misrank examples relative to their true leave-one-out (LOO) utility. We introduce KAIROS, a scalable, model-agnostic valuation framework that assigns each example a distributional influence score: its contribution to the Maximum Mean Discrepancy (MMD) between the empirical training distribution and a clean reference set. Unlike Wasserstein surrogates, our MMD-based influence admits a closed-form solution that faithfully approximates the exact LOO ranking within $O(1/N^2)$ error, requires no retraining, and naturally extends to conditional kernels for unified label- and feature-error detection. Moreover, KAIROS supports efficient online updates: when a new batch of size m arrives, all scores can be updated in $O(mN)$ time, delivering up to 50x speedup without compromising ranking quality. Empirical evaluations on noise, mislabeling, and poisoning benchmarks show that KAIROS consistently outperforms state-of-the-art model-, Shapley-, and Wasserstein-based baselines in both accuracy and runtime. We provide rigorous theoretical guarantees, including symmetry for reproducible rankings and density-separation for interpretable thresholds.
Related papers
- Sample Margin-Aware Recalibration of Temperature Scaling [20.87493013833571]
Recent advances in deep learning have significantly improved predictive accuracy.<n>Modern neural networks remain systematically overconfident, posing risks for deployment in safety-critical scenarios.<n>We propose a lightweight, data-efficient recalibration method that precisely scales logits based on the margin between the top two logits.
arXiv Detail & Related papers (2025-06-30T03:35:05Z) - Informed Correctors for Discrete Diffusion Models [31.814439169033616]
We propose a predictor-corrector sampling scheme where the corrector is informed by the diffusion model to more reliably counter the accumulating approximation errors.<n>We show how informed correctors consistently produce superior samples with fewer errors or improved FID scores for discrete diffusion models.
arXiv Detail & Related papers (2024-07-30T23:29:29Z) - Weak Supervision Performance Evaluation via Partial Identification [46.73061437177238]
Programmatic Weak Supervision (PWS) enables supervised model training without direct access to ground truth labels.
We present a novel method to address this challenge by framing model evaluation as a partial identification problem.
Our approach derives reliable bounds on key metrics without requiring labeled data, overcoming core limitations in current weak supervision evaluation techniques.
arXiv Detail & Related papers (2023-12-07T07:15:11Z) - DOMAIN: MilDly COnservative Model-BAsed OfflINe Reinforcement Learning [13.879614274334795]
conservatism should be incorporated into the algorithm to balance accurate offline data and imprecise model data.<n>This paper proposes a milDly cOnservative Model-bAsed offlINe RL algorithm (DOMAIN) without estimating model uncertainty.<n>The results show that DOMAIN outperforms prior RL algorithms and the average performance has improved by 1.8% on the D4RL benchmark.
arXiv Detail & Related papers (2023-09-16T08:39:28Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
We propose to enforce a emphconsistency property which states that predictions of the model on its own generated data are consistent across time.
We show that our novel training objective yields state-of-the-art results for conditional and unconditional generation in CIFAR-10 and baseline improvements in AFHQ and FFHQ.
arXiv Detail & Related papers (2023-02-17T18:45:04Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Adversarial Boot Camp: label free certified robustness in one epoch [7.51557557629519]
We present a certification approach which results in a certifiably robust model.
We achieve certified models on ImageNet-1k by retraining a model with this loss for one epoch without the use of label information.
arXiv Detail & Related papers (2020-10-05T13:47:45Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.