AIMatDesign: Knowledge-Augmented Reinforcement Learning for Inverse Materials Design under Data Scarcity
- URL: http://arxiv.org/abs/2507.00024v1
- Date: Tue, 17 Jun 2025 08:17:44 GMT
- Title: AIMatDesign: Knowledge-Augmented Reinforcement Learning for Inverse Materials Design under Data Scarcity
- Authors: Yeyong Yu, Xilei Bian, Jie Xiong, Xing Wu, Quan Qian,
- Abstract summary: AIMatDesign is a reinforcement learning framework for inverse design methods.<n>It builds a trusted experience pool and accelerates model convergence.<n>It significantly surpasses traditional machine learning and reinforcement learning methods in discovery efficiency, convergence speed, and success rates.
- Score: 5.660883851948541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing demand for novel materials, machine learning-driven inverse design methods face significant challenges in reconciling the high-dimensional materials composition space with limited experimental data. Existing approaches suffer from two major limitations: (I) machine learning models often lack reliability in high-dimensional spaces, leading to prediction biases during the design process; (II) these models fail to effectively incorporate domain expert knowledge, limiting their capacity to support knowledge-guided inverse design. To address these challenges, we introduce AIMatDesign, a reinforcement learning framework that addresses these limitations by augmenting experimental data using difference-based algorithms to build a trusted experience pool, accelerating model convergence. To enhance model reliability, an automated refinement strategy guided by large language models (LLMs) dynamically corrects prediction inconsistencies, reinforcing alignment between reward signals and state value functions. Additionally, a knowledge-based reward function leverages expert domain rules to improve stability and efficiency during training. Our experiments demonstrate that AIMatDesign significantly surpasses traditional machine learning and reinforcement learning methods in discovery efficiency, convergence speed, and success rates. Among the numerous candidates proposed by AIMatDesign, experimental synthesis of representative Zr-based alloys yielded a top-performing BMG with 1.7GPa yield strength and 10.2\% elongation, closely matching predictions. Moreover, the framework accurately captured the trend of yield strength variation with composition, demonstrating its reliability and potential for closed-loop materials discovery.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
We propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model.<n>It is a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them.<n>It provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states.
arXiv Detail & Related papers (2025-06-03T14:44:48Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - SDPERL: A Framework for Software Defect Prediction Using Ensemble Feature Extraction and Reinforcement Learning [0.0]
This paper proposes an innovative framework for software defect prediction.<n>It combines ensemble feature extraction with reinforcement learning (RL)--based feature selection.<n>We claim that this work is among the first in recent efforts to address this challenge at the file-level granularity.
arXiv Detail & Related papers (2024-12-10T21:16:05Z) - ExAL: An Exploration Enhanced Adversarial Learning Algorithm [0.0]
We propose a novel Exploration-enhanced Adversarial Learning Algorithm (ExAL)
ExAL integrates exploration-driven mechanisms to discover perturbations that maximize impact on the model's decision boundary.
We evaluate the performance of ExAL on the MNIST Handwritten Digits and Blended Malware datasets.
arXiv Detail & Related papers (2024-11-24T15:37:29Z) - Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology [2.368662284133926]
Digital Twin technology creates virtual replicas of physical objects, processes, or systems by replicating their properties, data, and behaviors.
Digital Twin technology has leveraged Graph forecasting techniques in large-scale complex sensor networks to enable accurate forecasting and simulation of diverse scenarios.
We introduce a hybrid architecture that enhances the hypergraph representation learning backbone by incorporating fast adaptation to new patterns and memory-based retrieval of past knowledge.
arXiv Detail & Related papers (2024-08-22T14:08:45Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
Predictive uncertainty supplements model predictions and enables improved functionality of downstream tasks.
We tackle this problem by building upon Monte Carlo Dropout (MCDO) models using the Axolotl framework.
We conduct experiments on (1) a multi-class classification task using the CIFAR10 dataset, and (2) a more complex human body segmentation task.
arXiv Detail & Related papers (2021-11-11T22:24:15Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.