Control-Optimized Deep Reinforcement Learning for Artificially Intelligent Autonomous Systems
- URL: http://arxiv.org/abs/2507.00268v1
- Date: Mon, 30 Jun 2025 21:25:52 GMT
- Title: Control-Optimized Deep Reinforcement Learning for Artificially Intelligent Autonomous Systems
- Authors: Oren Fivel, Matan Rudman, Kobi Cohen,
- Abstract summary: Deep reinforcement learning (DRL) has become a powerful tool for complex decision-making in machine learning and AI.<n>Traditional methods often assume perfect action execution, overlooking the uncertainties and deviations between an agent's selected actions and the actual system response.<n>This work advances AI by developing a novel control-optimized DRL framework that explicitly models and compensates for action execution mismatches.
- Score: 8.766411351797885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) has become a powerful tool for complex decision-making in machine learning and AI. However, traditional methods often assume perfect action execution, overlooking the uncertainties and deviations between an agent's selected actions and the actual system response. In real-world applications, such as robotics, mechatronics, and communication networks, execution mismatches arising from system dynamics, hardware constraints, and latency can significantly degrade performance. This work advances AI by developing a novel control-optimized DRL framework that explicitly models and compensates for action execution mismatches, a challenge largely overlooked in existing methods. Our approach establishes a structured two-stage process: determining the desired action and selecting the appropriate control signal to ensure proper execution. It trains the agent while accounting for action mismatches and controller corrections. By incorporating these factors into the training process, the AI agent optimizes the desired action with respect to both the actual control signal and the intended outcome, explicitly considering execution errors. This approach enhances robustness, ensuring that decision-making remains effective under real-world uncertainties. Our approach offers a substantial advancement for engineering practice by bridging the gap between idealized learning and real-world implementation. It equips intelligent agents operating in engineering environments with the ability to anticipate and adjust for actuation errors and system disturbances during training. We evaluate the framework in five widely used open-source mechanical simulation environments we restructured and developed to reflect real-world operating conditions, showcasing its robustness against uncertainties and offering a highly practical and efficient solution for control-oriented applications.
Related papers
- Simulation-Driven Reinforcement Learning in Queuing Network Routing Optimization [0.0]
This study focuses on the development of a simulation-driven reinforcement learning (RL) framework for optimizing routing decisions in complex queueing network systems.<n>We propose a robust RL approach leveraging Deep Deterministic Policy Gradient (DDPG) combined with Dyna-style planning (Dyna-DDPG)<n> Comprehensive experiments and rigorous evaluations demonstrate the framework's capability to rapidly learn effective routing policies.
arXiv Detail & Related papers (2025-07-24T20:32:47Z) - Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.<n>We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.<n>We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - Towards More Efficient, Robust, Instance-adaptive, and Generalizable Sequential Decision making [9.955716251167424]
My work focuses on reinforcement learning (RL), multi-armed bandits, and their applications.<n>My research aims to develop more efficient, robust, instance-adaptive, and generalizable sequential decision-making algorithms.
arXiv Detail & Related papers (2025-04-12T12:17:20Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer.<n>By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Learning to Generate All Feasible Actions [4.333208181196761]
We introduce action mapping, a novel approach that divides the learning process into two steps: first learn feasibility and subsequently, the objective.
This paper focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying of the feasibility model.
We demonstrate the agent's proficiency in generating actions across disconnected feasible action sets.
arXiv Detail & Related papers (2023-01-26T23:15:51Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - Differentiable Constrained Imitation Learning for Robot Motion Planning
and Control [0.26999000177990923]
We develop a framework for constraint robotic motion planning and control, as well as traffic agent simulation.
We focus on mobile robot and automated driving applications.
Simulated experiments of mobile robot navigation and automated driving provide evidence for the performance of the proposed method.
arXiv Detail & Related papers (2022-10-21T08:19:45Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications.
In this paper, we propose a learning-based control framework consisting of several aspects.
We show such an ECBF-based modular deep RL algorithm achieves near-perfect success rates and guard safety with a high probability.
arXiv Detail & Related papers (2021-09-07T00:51:12Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.