論文の概要: GDGS: 3D Gaussian Splatting Via Geometry-Guided Initialization And Dynamic Density Control
- arxiv url: http://arxiv.org/abs/2507.00363v1
- Date: Tue, 01 Jul 2025 01:29:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.153684
- Title: GDGS: 3D Gaussian Splatting Via Geometry-Guided Initialization And Dynamic Density Control
- Title(参考訳): GDGS: 幾何学誘導初期化と動的密度制御による3次元ガウス散乱
- Authors: Xingjun Wang, Lianlei Shan,
- Abstract要約: Gaussian Splattingは、リアルタイムのパフォーマンスをサポートしながら、リアルな画像をレンダリングする代替手段である。
本稿では,初期化,最適化,密度制御における課題に対処するため,3次元ガウス分割法(3DGS)citeKerbl2023を提案する。
提案手法は,高忠実度画像をリアルタイムにレンダリングすることで,最先端の手法に匹敵する,あるいは優れた結果を示す。
- 参考スコア(独自算出の注目度): 6.91367883100748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method to enhance 3D Gaussian Splatting (3DGS)~\cite{Kerbl2023}, addressing challenges in initialization, optimization, and density control. Gaussian Splatting is an alternative for rendering realistic images while supporting real-time performance, and it has gained popularity due to its explicit 3D Gaussian representation. However, 3DGS heavily depends on accurate initialization and faces difficulties in optimizing unstructured Gaussian distributions into ordered surfaces, with limited adaptive density control mechanism proposed so far. Our first key contribution is a geometry-guided initialization to predict Gaussian parameters, ensuring precise placement and faster convergence. We then introduce a surface-aligned optimization strategy to refine Gaussian placement, improving geometric accuracy and aligning with the surface normals of the scene. Finally, we present a dynamic adaptive density control mechanism that adjusts Gaussian density based on regional complexity, for visual fidelity. These innovations enable our method to achieve high-fidelity real-time rendering and significant improvements in visual quality, even in complex scenes. Our method demonstrates comparable or superior results to state-of-the-art methods, rendering high-fidelity images in real time.
- Abstract(参考訳): 本稿では,初期化,最適化,密度制御における課題に対処するため,3次元ガウススティング(3DGS)~\cite{Kerbl2023}を提案する。
Gaussian Splattingはリアルタイムパフォーマンスをサポートしながらリアルな画像をレンダリングする代替手段であり、その明示的な3Dガウス表現によって人気を博している。
しかし、3DGSは正確な初期化に大きく依存しており、未構造化ガウス分布を順序曲面に最適化する困難に直面している。
最初の重要な貢献は幾何学誘導初期化であり、ガウスのパラメータを予測し、正確な配置とより高速な収束を保証する。
次に、ガウス配置を洗練させ、幾何的精度を改善し、シーンの表面正規と整合する曲面整合最適化戦略を導入する。
最後に,局所的複雑性に基づいてガウス密度を調整する動的適応密度制御機構について述べる。
これらの革新により,複雑なシーンであっても,高忠実なリアルタイムレンダリングを実現し,視覚的品質を大幅に向上させることができる。
提案手法は,高忠実度画像をリアルタイムにレンダリングすることで,最先端の手法に匹敵する,あるいは優れた結果を示す。
関連論文リスト
- GP-GS: Gaussian Processes for Enhanced Gaussian Splatting [15.263608848427136]
本稿では,新しい3次元再構成フレームワークであるGaussian Processes enhanced Gaussian Splatting (GP-GS)を提案する。
GP-GSはスパース構造-運動点雲の適応的および不確実性誘導密度化を可能にする。
合成および実世界のデータセットで行った実験は、提案フレームワークの有効性と実用性を検証する。
論文 参考訳(メタデータ) (2025-02-04T12:50:16Z) - RP-SLAM: Real-time Photorealistic SLAM with Efficient 3D Gaussian Splatting [22.76955981251234]
RP-SLAM(RP-SLAM)は、単眼およびRGB-Dカメラのための3Dガウススプラッティングに基づく視覚SLAM法である。
リアルタイム性能とモデルコンパクト性を確保しつつ、最先端の地図レンダリング精度を実現する。
論文 参考訳(メタデータ) (2024-12-13T05:27:35Z) - Mini-Splatting2: Building 360 Scenes within Minutes via Aggressive Gaussian Densification [4.733612131945549]
Mini-Splatting2は最適化時間、ガウス数、レンダリング品質のバランスの取れたトレードオフを実現する。
我々の研究は、現実世界のアプリケーションにおいて、より効率的で高品質な3Dシーンモデリングのステージを定めている。
論文 参考訳(メタデータ) (2024-11-19T11:47:40Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。