Accurate and Efficient Fetal Birth Weight Estimation from 3D Ultrasound
- URL: http://arxiv.org/abs/2507.00398v1
- Date: Tue, 01 Jul 2025 03:26:02 GMT
- Title: Accurate and Efficient Fetal Birth Weight Estimation from 3D Ultrasound
- Authors: Jian Wang, Qiongying Ni, Hongkui Yu, Ruixuan Yao, Jinqiao Ying, Bin Zhang, Xingyi Yang, Jin Peng, Jiongquan Chen, Junxuan Yu, Wenlong Shi, Chaoyu Chen, Zhongnuo Yan, Mingyuan Luo, Gaocheng Cai, Dong Ni, Jing Lu, Xin Yang,
- Abstract summary: We propose the first method for directly estimating fetal birth weight (FBW) from 3D fetal US volumes.<n>Our approach integrates a multi-scale feature fusion network (MFFN) and a synthetic sample-based learning framework (SSLF)<n> Experimental results demonstrate that our method achieves superior performance, with a mean absolute error of $166.4pm155.9$ $g$ and a mean absolute percentage error of $5.1pm4.6$%.
- Score: 29.69889062049553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate fetal birth weight (FBW) estimation is essential for optimizing delivery decisions and reducing perinatal mortality. However, clinical methods for FBW estimation are inefficient, operator-dependent, and challenging to apply in cases of complex fetal anatomy. Existing deep learning methods are based on 2D standard ultrasound (US) images or videos that lack spatial information, limiting their prediction accuracy. In this study, we propose the first method for directly estimating FBW from 3D fetal US volumes. Our approach integrates a multi-scale feature fusion network (MFFN) and a synthetic sample-based learning framework (SSLF). The MFFN effectively extracts and fuses multi-scale features under sparse supervision by incorporating channel attention, spatial attention, and a ranking-based loss function. SSLF generates synthetic samples by simply combining fetal head and abdomen data from different fetuses, utilizing semi-supervised learning to improve prediction performance. Experimental results demonstrate that our method achieves superior performance, with a mean absolute error of $166.4\pm155.9$ $g$ and a mean absolute percentage error of $5.1\pm4.6$%, outperforming existing methods and approaching the accuracy of a senior doctor. Code is available at: https://github.com/Qioy-i/EFW.
Related papers
- Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound [9.997984970090954]
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications.<n>In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis.
arXiv Detail & Related papers (2025-06-30T06:07:41Z) - Automated Fetal Biometry Assessment with Deep Ensembles using Sparse-Sampling of 2D Intrapartum Ultrasound Images [12.535556165305618]
We propose an automated fetal biometry measurement pipeline to reduce intra- and inter-observer variability.<n>We perform sparse sampling to mitigate class imbalances and reduce spurious correlations in task.<n>Our solution achieved ACC: 0.9452, F1: 0.9225, AUC: 0.983, MCC: 0.8361, DSC: 0.918, HD: 19.73, ASD: 5.71, $Delta_AoP$: 8.90 and $Delta_HSD$: 14.35 across unseen hold-out set of 4 patients and 224 US frames.
arXiv Detail & Related papers (2025-05-20T16:31:09Z) - Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification [3.998431476275487]
We propose a lightweight artificial intelligence architecture to classify the largest benchmark ultrasound dataset.
The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k.
Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576.
arXiv Detail & Related papers (2024-10-22T20:02:38Z) - Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using
Fusion Strategies and Deep Learning [11.137087573421258]
We propose an automatic three-dimensional multi-modal (B-mode and power Doppler) ultrasound segmentation of the human placenta.
We collected data containing B-mode and power Doppler ultrasound scans for 400 studies.
We found that multimodal information in the form of B-mode and power Doppler scans outperform any single modality.
arXiv Detail & Related papers (2024-01-17T23:17:08Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Self-Supervised Pretraining Improves Performance and Inference
Efficiency in Multiple Lung Ultrasound Interpretation Tasks [65.23740556896654]
We investigated whether self-supervised pretraining could produce a neural network feature extractor applicable to multiple classification tasks in lung ultrasound analysis.
When fine-tuning on three lung ultrasound tasks, pretrained models resulted in an improvement of the average across-task area under the receiver operating curve (AUC) by 0.032 and 0.061 on local and external test sets respectively.
arXiv Detail & Related papers (2023-09-05T21:36:42Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
We propose a robust ensemble model called ensemble of tuned Support Vector Machine and ExtraTrees for predicting fetal health.
Our proposed ETSE model outperformed the other models with 100% precision, 100% recall, 100% F1-score, and 99.66% accuracy.
arXiv Detail & Related papers (2023-05-26T16:40:44Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals.
We analyze the challenges these methods meet with the empirical experiment results.
We introduce a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance.
arXiv Detail & Related papers (2022-03-23T07:33:37Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.