Quantum Bayesian inference with Suport vector states for intrusion detection
- URL: http://arxiv.org/abs/2507.00403v1
- Date: Tue, 01 Jul 2025 03:41:04 GMT
- Title: Quantum Bayesian inference with Suport vector states for intrusion detection
- Authors: Nayema Mridha, Garrv Sipani, Eva R Gaarder, Shah Haque, Radhika Kuttala, Binay P Akhouri, Mohamad M Al Zein, Eric Howard,
- Abstract summary: We present a quantum Bayesian inference method for intrusion detection.<n>The method yields joint, marginal, and conditional probabilities aligned with causal structure.<n>Our results demonstrate the feasibility and interpretability of quantum-native inference for information security applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a quantum Bayesian inference method for intrusion detection, using explicitly constructed quantum circuits and statevector simulation. Prior and conditional probabilities are encoded via unitary gates, and posterior distributions are extracted through symbolic post-selection. Applied to a scenario with network spikes, system vulnerabilities, and false alarms, the method yields joint, marginal, and conditional probabilities aligned with causal structure. Our results demonstrate the feasibility and interpretability of quantum-native inference for information security applications
Related papers
- A deep dive into the interplay of structured quantum peaked circuits and infinite temperature correlation functions [0.0]
We propose the infinite-temperature correlation function (ITCF) as a physically meaningful observable for noisy quantum devices.<n>We construct purposefully biased quantum states using either Grover-based amplitude amplification or shallow structured circuits.<n>Our results highlight a problem-specific state preparation framework that mitigates signal loss from random averaging.
arXiv Detail & Related papers (2025-04-15T14:41:36Z) - Pseudorandom quantum authentication [0.8204952610951527]
We introduce the pseudorandom quantum authentication scheme (PQAS)<n>It is an efficient method for quantum states that relies solely on the existence of pseudorandom unitaries (PRUs)
arXiv Detail & Related papers (2025-01-01T20:46:37Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.<n>We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Quantum Rewinding for IOP-Based Succinct Arguments [45.5096562396529]
We prove that an interactive variant of the BCS transformation is secure in the standard model against quantum adversaries when the vector commitment scheme is collapsing.
As a consequence of our results, we obtain standard-model post-quantum secure succinct arguments with the best complexity known.
arXiv Detail & Related papers (2024-11-08T06:33:08Z) - Bounding the conditional von-Neumann entropy for device independent cryptography and randomness extraction [0.0]
This paper introduces a numerical framework for establishing lower bounds on the conditional von-Neumann entropy in device-independent quantum cryptography and randomness extraction scenarios.
The framework offers an adaptable tool for practical quantum cryptographic protocols, expanding secure communication in untrusted environments.
arXiv Detail & Related papers (2024-11-07T16:48:49Z) - Measuring Quantum Information Leakage Under Detection Threat [7.82527155589504]
Gentle quantum leakage is proposed as a measure of information leakage to arbitrary eavesdroppers.
Measures are used to encode the desire of the eavesdropper to evade detection.
Global depolarizing noise is shown to reduce gentle quantum leakage.
arXiv Detail & Related papers (2024-03-18T03:07:09Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Quantum Sampling for Optimistic Finite Key Rates in High Dimensional
Quantum Cryptography [1.5469452301122175]
We revisit so-called sampling-based entropic uncertainty relations, deriving newer, more powerful, relations and applying them to source-independent quantum random number generators and high-dimensional quantum key distribution protocols.
These sampling-based approaches to entropic uncertainty, and their application to quantum cryptography, hold great potential for deriving proofs of security for quantum cryptographic systems.
arXiv Detail & Related papers (2020-12-08T01:32:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.