Quantum Sampling for Optimistic Finite Key Rates in High Dimensional
Quantum Cryptography
- URL: http://arxiv.org/abs/2012.04151v1
- Date: Tue, 8 Dec 2020 01:32:59 GMT
- Title: Quantum Sampling for Optimistic Finite Key Rates in High Dimensional
Quantum Cryptography
- Authors: Keegan Yao, Walter O. Krawec, Jiadong Zhu
- Abstract summary: We revisit so-called sampling-based entropic uncertainty relations, deriving newer, more powerful, relations and applying them to source-independent quantum random number generators and high-dimensional quantum key distribution protocols.
These sampling-based approaches to entropic uncertainty, and their application to quantum cryptography, hold great potential for deriving proofs of security for quantum cryptographic systems.
- Score: 1.5469452301122175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been shown recently that the framework of quantum sampling, as
introduced by Bouman and Fehr, can lead to new entropic uncertainty relations
highly applicable to finite-key cryptographic analyses. Here we revisit these
so-called sampling-based entropic uncertainty relations, deriving newer, more
powerful, relations and applying them to source-independent quantum random
number generators and high-dimensional quantum key distribution protocols.
Along the way, we prove several interesting results in the asymptotic case for
our entropic uncertainty relations. These sampling-based approaches to entropic
uncertainty, and their application to quantum cryptography, hold great
potential for deriving proofs of security for quantum cryptographic systems,
and the approaches we use here may be applicable to an even wider range of
scenarios.
Related papers
- Quantum Rewinding for IOP-Based Succinct Arguments [45.5096562396529]
We prove that an interactive variant of the BCS transformation is secure in the standard model against quantum adversaries when the vector commitment scheme is collapsing.
As a consequence of our results, we obtain standard-model post-quantum secure succinct arguments with the best complexity known.
arXiv Detail & Related papers (2024-11-08T06:33:08Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
Physical Unclonable Functions (PUFs) leverage inherent, non-clonable physical randomness to generate unique input-output pairs.
Quantum PUFs (QPUFs) extend this concept by using quantum states as input-output pairs.
We show that random unitary QPUFs cannot achieve existential unforgeability against Quantum Polynomial Time adversaries.
We introduce a second model where the QPUF functions as a nonunitary quantum channel, which guarantees existential unforgeability.
arXiv Detail & Related papers (2024-04-17T12:16:41Z) - Disentanglement Provides a Unified Estimation for Quantum Entropies and Distance Measures [2.14566083603001]
This paper introduces a unified approach using Disentangling Quantum Neural Networks (DEQNN) for estimating quantum entropies and distances.
Our mathematical proof demonstrates that DEQNN can preserve quantum entropies and distances in smaller partial states.
This method is scalable to an arbitrary number of quantum states and is particularly effective for less complex quantum systems.
arXiv Detail & Related papers (2024-01-15T14:33:03Z) - Fundamental Limitations within the Selected Cryptographic Scenarios and
Supra-Quantum Theories [0.0]
We study the fundamental limitations within the selected quantum and supra-quantum cryptographic scenarios.
We investigate various security paradigms, bipartite and multipartite settings.
We propose a novel type of rerouting attack on the quantum Internet.
arXiv Detail & Related papers (2023-11-14T14:48:57Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Quantum Local Differential Privacy and Quantum Statistical Query Model [0.7673339435080445]
Quantum statistical queries provide a theoretical framework for investigating the computational power of a learner with limited quantum resources.
In this work, we establish an equivalence between quantum statistical queries and quantum differential privacy in the local model.
We consider the task of quantum multi-party computation under local differential privacy.
arXiv Detail & Related papers (2022-03-07T18:38:02Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Tight finite-key analysis for generalized high-dimensional quantum key
distribution [23.578892457164933]
We propose a tight finite-key analysis suitable for generalized high-dimensional quantum key distribution protocols.
Benefitting from our theory, high-dimensional quantum key distribution protocols with finite resources become experimentally feasible.
arXiv Detail & Related papers (2020-08-08T12:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.