BadViM: Backdoor Attack against Vision Mamba
- URL: http://arxiv.org/abs/2507.00577v1
- Date: Tue, 01 Jul 2025 08:59:24 GMT
- Title: BadViM: Backdoor Attack against Vision Mamba
- Authors: Yinghao Wu, Liyan Zhang,
- Abstract summary: Vision State Space Models (SSMs) have emerged as promising alternatives to Vision Transformers (ViTs)<n>Backdoor attacks aim to embed hidden triggers into victim models, causing the model to misclassify inputs containing these triggers while maintaining normal behavior on clean inputs.<n>This paper investigates the susceptibility of ViM to backdoor attacks by introducing BadViM, a novel backdoor attack framework specifically designed for Vision Mamba.
- Score: 4.675365717794515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision State Space Models (SSMs), particularly architectures like Vision Mamba (ViM), have emerged as promising alternatives to Vision Transformers (ViTs). However, the security implications of this novel architecture, especially their vulnerability to backdoor attacks, remain critically underexplored. Backdoor attacks aim to embed hidden triggers into victim models, causing the model to misclassify inputs containing these triggers while maintaining normal behavior on clean inputs. This paper investigates the susceptibility of ViM to backdoor attacks by introducing BadViM, a novel backdoor attack framework specifically designed for Vision Mamba. The proposed BadViM leverages a Resonant Frequency Trigger (RFT) that exploits the frequency sensitivity patterns of the victim model to create stealthy, distributed triggers. To maximize attack efficacy, we propose a Hidden State Alignment loss that strategically manipulates the internal representations of model by aligning the hidden states of backdoor images with those of target classes. Extensive experimental results demonstrate that BadViM achieves superior attack success rates while maintaining clean data accuracy. Meanwhile, BadViM exhibits remarkable resilience against common defensive measures, including PatchDrop, PatchShuffle and JPEG compression, which typically neutralize normal backdoor attacks.
Related papers
- Backdoor Attack on Vision Language Models with Stealthy Semantic Manipulation [32.24294112337828]
BadSem is a data poisoning attack that injects backdoors by deliberately misaligning image-text pairs during training.<n>Our experiments show that BadSem achieves over 98% average ASR, generalizes well to out-of-distribution datasets, and can transfer across poisoning modalities.<n>Our findings highlight the urgent need to address semantic vulnerabilities in Vision Language Models for their safer deployment.
arXiv Detail & Related papers (2025-06-08T16:40:40Z) - BadScan: An Architectural Backdoor Attack on Visual State Space Models [2.2499166814992435]
Recently introduced Visual State Space Model (VMamba) has shown exceptional performance compared to Vision Transformers (ViT)
One common approach is to embed a trigger in the training data to retrain the model, causing it to misclassify data samples into a target class.
We introduce a novel architectural backdoor attack, termed BadScan, designed to deceive the VMamba model.
arXiv Detail & Related papers (2024-11-26T10:13:09Z) - Backdoor Attack Against Vision Transformers via Attention Gradient-Based Image Erosion [4.036142985883415]
Vision Transformers (ViTs) have outperformed traditional Convolutional Neural Networks (CNN) across various computer vision tasks.
ViTs are vulnerable to backdoor attacks, where an adversary embeds a backdoor into the victim model.
We propose an Attention Gradient-based Erosion Backdoor (AGEB) targeted at ViTs.
arXiv Detail & Related papers (2024-10-30T04:06:12Z) - Not All Prompts Are Secure: A Switchable Backdoor Attack Against Pre-trained Vision Transformers [51.0477382050976]
An extra prompt token, called the switch token in this work, can turn the backdoor mode on, converting a benign model into a backdoored one.
To attack a pre-trained model, our proposed attack, named SWARM, learns a trigger and prompt tokens including a switch token.
Experiments on diverse visual recognition tasks confirm the success of our switchable backdoor attack, achieving 95%+ attack success rate.
arXiv Detail & Related papers (2024-05-17T08:19:48Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Defending Backdoor Attacks on Vision Transformer via Patch Processing [18.50522247164383]
Vision Transformers (ViTs) have a radically different architecture with significantly less inductive bias than Convolutional Neural Networks.
This paper investigates a representative causative attack, i.e., backdoor attacks.
We propose an effective method for ViTs to defend both patch-based and blending-based trigger backdoor attacks via patch processing.
arXiv Detail & Related papers (2022-06-24T17:29:47Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Rethinking the Trigger of Backdoor Attack [83.98031510668619]
Currently, most of existing backdoor attacks adopted the setting of emphstatic trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area.
We demonstrate that such an attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training.
arXiv Detail & Related papers (2020-04-09T17:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.