Bridging Classical and Learning-based Iterative Registration through Deep Equilibrium Models
- URL: http://arxiv.org/abs/2507.00582v2
- Date: Tue, 08 Jul 2025 09:07:07 GMT
- Title: Bridging Classical and Learning-based Iterative Registration through Deep Equilibrium Models
- Authors: Yi Zhang, Yidong Zhao, Qian Tao,
- Abstract summary: We propose DEQReg, a novel registration framework based on Deep Equilibrium Models (DEQ)<n>We show that DEQReg can achieve competitive registration performance, while substantially reducing memory consumption.<n>We also reveal an intriguing phenomenon: the performance of existing unrolling methods first increases slightly then degrades irreversibly when the inference steps go beyond the training configuration.
- Score: 7.6061804149819885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deformable medical image registration is traditionally formulated as an optimization problem. While classical methods solve this problem iteratively, recent learning-based approaches use recurrent neural networks (RNNs) to mimic this process by unrolling the prediction of deformation fields in a fixed number of steps. However, classical methods typically converge after sufficient iterations, but learning-based unrolling methods lack a theoretical convergence guarantee and show instability empirically. In addition, unrolling methods have a practical bottleneck at training time: GPU memory usage grows linearly with the unrolling steps due to backpropagation through time (BPTT). To address both theoretical and practical challenges, we propose DEQReg, a novel registration framework based on Deep Equilibrium Models (DEQ), which formulates registration as an equilibrium-seeking problem, establishing a natural connection between classical optimization and learning-based unrolling methods. DEQReg maintains constant memory usage, enabling theoretically unlimited iteration steps. Through extensive evaluation on the public brain MRI and lung CT datasets, we show that DEQReg can achieve competitive registration performance, while substantially reducing memory consumption compared to state-of-the-art unrolling methods. We also reveal an intriguing phenomenon: the performance of existing unrolling methods first increases slightly then degrades irreversibly when the inference steps go beyond the training configuration. In contrast, DEQReg achieves stable convergence with its inbuilt equilibrium-seeking mechanism, bridging the gap between classical optimization-based and modern learning-based registration methods.
Related papers
- Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent [7.248102801711294]
Deep Equilibrium Models (DEQs) are implicit neural networks with fixed points.<n>We introduce a novel DEQ formulation based on Mirror Descent defined in terms of a tailored non-Euclidean geometry.<n>We propose computational strategies that enable both efficient training and fully parameter-free inference.
arXiv Detail & Related papers (2025-07-15T16:33:01Z) - Restarted contractive operators to learn at equilibrium [0.0]
We introduce an algorithm that combines a restart strategy with JFB computed by AD and we show that the learned steps can be made arbitrarily close to the optimal DEQ framework.<n>We show that this method is effective for training weights in weighted norms; stepsizes and regularization levels of Plug-and-Play schemes; and a DRUNet denoiser embedded in Forward-Backward iterates.
arXiv Detail & Related papers (2025-06-16T08:38:56Z) - SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
We present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT.
Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Alignment (S++) framework.
Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Alignment to align the disjoint classification layers in a post-hoc fashion.
arXiv Detail & Related papers (2024-08-15T17:50:07Z) - Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems [10.404992912881601]
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions.<n>We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly.
arXiv Detail & Related papers (2024-07-24T12:26:21Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
We propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix.<n>It consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module.<n>This work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A
Memory-Efficient Inverse Problem Solver [26.87738024952936]
In inverse problems we aim to reconstruct some underlying signal of interest from potentially corrupted and often ill-posed measurements.
We propose an LU algorithm with shallow equilibrium regularizers (L)
These implicit models are as expressive as deeper convolutional networks, but far more memory efficient during training.
arXiv Detail & Related papers (2022-10-10T19:50:37Z) - DLCFT: Deep Linear Continual Fine-Tuning for General Incremental
Learning [29.80680408934347]
We propose an alternative framework to incremental learning where we continually fine-tune the model from a pre-trained representation.
Our method takes advantage of linearization technique of a pre-trained neural network for simple and effective continual learning.
We show that our method can be applied to general continual learning settings, we evaluate our method in data-incremental, task-incremental, and class-incremental learning problems.
arXiv Detail & Related papers (2022-08-17T06:58:14Z) - Data-driven Weight Initialization with Sylvester Solvers [72.11163104763071]
We propose a data-driven scheme to initialize the parameters of a deep neural network.
We show that our proposed method is especially effective in few-shot and fine-tuning settings.
arXiv Detail & Related papers (2021-05-02T07:33:16Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Managing caching strategies for stream reasoning with reinforcement
learning [18.998260813058305]
Stream reasoning allows efficient decision-making over continuously changing data.
We suggest a novel approach that uses the Conflict-Driven Constraint Learning (CDCL) to efficiently update legacy solutions.
In particular, we study the applicability of reinforcement learning to continuously assess the utility of learned constraints.
arXiv Detail & Related papers (2020-08-07T15:01:41Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.