De-Simplifying Pseudo Labels to Enhancing Domain Adaptive Object Detection
- URL: http://arxiv.org/abs/2507.00608v1
- Date: Tue, 01 Jul 2025 09:40:27 GMT
- Title: De-Simplifying Pseudo Labels to Enhancing Domain Adaptive Object Detection
- Authors: Zehua Fu, Chenguang Liu, Yuyu Chen, Jiaqi Zhou, Qingjie Liu, Yunhong Wang,
- Abstract summary: We investigate the limitations that prevent self-labeling detectors from achieving commensurate performance with domain alignment methods.<n>We propose a novel approach called De-Simplifying Pseudo Labels (DeSimPL) to mitigate the issue.<n> Experimental results demonstrate that DeSimPL effectively reduces the proportion of simple samples during training, leading to a significant performance improvement for self-labeling detectors.
- Score: 33.07404672485466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite its significant success, object detection in traffic and transportation scenarios requires time-consuming and laborious efforts in acquiring high-quality labeled data. Therefore, Unsupervised Domain Adaptation (UDA) for object detection has recently gained increasing research attention. UDA for object detection has been dominated by domain alignment methods, which achieve top performance. Recently, self-labeling methods have gained popularity due to their simplicity and efficiency. In this paper, we investigate the limitations that prevent self-labeling detectors from achieving commensurate performance with domain alignment methods. Specifically, we identify the high proportion of simple samples during training, i.e., the simple-label bias, as the central cause. We propose a novel approach called De-Simplifying Pseudo Labels (DeSimPL) to mitigate the issue. DeSimPL utilizes an instance-level memory bank to implement an innovative pseudo label updating strategy. Then, adversarial samples are introduced during training to enhance the proportion. Furthermore, we propose an adaptive weighted loss to avoid the model suffering from an abundance of false positive pseudo labels in the late training period. Experimental results demonstrate that DeSimPL effectively reduces the proportion of simple samples during training, leading to a significant performance improvement for self-labeling detectors. Extensive experiments conducted on four benchmarks validate our analysis and conclusions.
Related papers
- Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation [19.620523416385346]
Source-free active domain adaptation (SFADA) addresses the challenge of adapting a pre-trained model to new domains without access to source data.<n>This scenario is particularly relevant in real-world applications where data privacy, storage limitations, or labeling costs are significant concerns.<n>We propose the Propensity-driven Uncertainty Learning (ProULearn) framework to effectively select more informative samples without frequently requesting human annotations.
arXiv Detail & Related papers (2025-01-23T10:05:25Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection [1.6249267147413524]
Semi-supervised object detection (SSOD) has made significant progress with the development of pseudo-label-based end-to-end methods.
Many methods face challenges due to class imbalance, which hinders the effectiveness of the pseudo-label generator.
In this paper, we examine the root causes of low-quality pseudo-labels and present novel learning mechanisms to improve the label generation quality.
arXiv Detail & Related papers (2023-06-04T06:01:53Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - Constraining Pseudo-label in Self-training Unsupervised Domain
Adaptation with Energy-based Model [26.074500538428364]
unsupervised domain adaptation (UDA) is developed to introduce the knowledge in the labeled source domain to the unlabeled target domain.
Recently, deep self-training presents a powerful means for UDA, involving an iterative process of predicting the target domain.
We resort to the energy-based model and constrain the training of the unlabeled target sample with an energy function minimization objective.
arXiv Detail & Related papers (2022-08-26T22:50:23Z) - Unsupervised Domain Adaptive Salient Object Detection Through
Uncertainty-Aware Pseudo-Label Learning [104.00026716576546]
We propose to learn saliency from synthetic but clean labels, which naturally has higher pixel-labeling quality without the effort of manual annotations.
We show that our proposed method outperforms the existing state-of-the-art deep unsupervised SOD methods on several benchmark datasets.
arXiv Detail & Related papers (2022-02-26T16:03:55Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z) - Energy-constrained Self-training for Unsupervised Domain Adaptation [25.594991545790638]
Unsupervised domain adaptation (UDA) aims to transfer the knowledge on a labeled source domain distribution to perform well on an unlabeled target domain.
Recently, the deep self-training involves an iterative process of predicting on the target domain and then taking the confident predictions as hard pseudo-labels for retraining.
In this paper, we resort to the energy-based model and constrain the training of the unlabeled target sample with the energy function minimization objective.
arXiv Detail & Related papers (2021-01-01T21:02:18Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z) - Semi-supervised Relation Extraction via Incremental Meta Self-Training [56.633441255756075]
Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples.
Existing self-training methods suffer from the gradual drift problem, where noisy pseudo labels on unlabeled data are incorporated during training.
We propose a method called MetaSRE, where a Relation Label Generation Network generates quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective.
arXiv Detail & Related papers (2020-10-06T03:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.