Diffusion Classifier Guidance for Non-robust Classifiers
- URL: http://arxiv.org/abs/2507.00687v1
- Date: Tue, 01 Jul 2025 11:39:41 GMT
- Title: Diffusion Classifier Guidance for Non-robust Classifiers
- Authors: Philipp Vaeth, Dibyanshu Kumar, Benjamin Paassen, Magda Gregorová,
- Abstract summary: We study the sensitivity of general, non-robust, and robust classifiers to noise of the diffusion process.<n>Non-robust classifiers exhibit significant accuracy degradation under noisy conditions, leading to unstable guidance gradients.<n>We propose a method that utilizes one-step denoised image predictions and implements techniques inspired by optimization methods.
- Score: 0.5999777817331317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifier guidance is intended to steer a diffusion process such that a given classifier reliably recognizes the generated data point as a certain class. However, most classifier guidance approaches are restricted to robust classifiers, which were specifically trained on the noise of the diffusion forward process. We extend classifier guidance to work with general, non-robust, classifiers that were trained without noise. We analyze the sensitivity of both non-robust and robust classifiers to noise of the diffusion process on the standard CelebA data set, the specialized SportBalls data set and the high-dimensional real-world CelebA-HQ data set. Our findings reveal that non-robust classifiers exhibit significant accuracy degradation under noisy conditions, leading to unstable guidance gradients. To mitigate these issues, we propose a method that utilizes one-step denoised image predictions and implements stabilization techniques inspired by stochastic optimization methods, such as exponential moving averages. Experimental results demonstrate that our approach improves the stability of classifier guidance while maintaining sample diversity and visual quality. This work contributes to advancing conditional sampling techniques in generative models, enabling a broader range of classifiers to be used as guidance classifiers.
Related papers
- What is Adversarial Training for Diffusion Models? [4.71482540145286]
We show that adversarial training (AT) for diffusion models (DMs) fundamentally differs from classifiers.<n>AT is a way to enforce smoothness in the diffusion flow, improving to outliers and corrupted data.<n>We rigorously evaluate our approach with proof-of-concept datasets with known distributions in low- and high-dimensional space.
arXiv Detail & Related papers (2025-05-27T20:32:28Z) - Studying Classifier(-Free) Guidance From a Classifier-Centric Perspective [100.54185280153753]
We find that both classifier guidance and classifier-free guidance achieve conditional generation by pushing the denoising diffusion trajectories away from decision boundaries.<n>We propose a generic postprocessing step built upon flow-matching to shrink the gap between the learned distribution for a pretrained denoising diffusion model and the real data distribution.
arXiv Detail & Related papers (2025-03-13T17:59:59Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
Adversarial purification is one of the promising approaches to defend neural networks against adversarial attacks.
We propose gUided Purification (COUP) algorithm, which purifies while keeping away from the classifier decision boundary.
Experimental results show that COUP can achieve better adversarial robustness under strong attack methods.
arXiv Detail & Related papers (2024-08-12T02:48:00Z) - GradCheck: Analyzing classifier guidance gradients for conditional diffusion sampling [42.50219822975012]
gradients from classifiers, especially those not trained on noisy images, are often unstable.
This study conducts a gradient analysis comparing robust and non-robust classifiers, as well as multiple gradient stabilization techniques.
arXiv Detail & Related papers (2024-06-25T09:23:25Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - DiffAug: A Diffuse-and-Denoise Augmentation for Training Robust Classifiers [6.131022957085439]
We introduce DiffAug, a simple and efficient diffusion-based augmentation technique to train image classifiers.
Applying DiffAug to a given example consists of one forward-diffusion step followed by one reverse-diffusion step.
arXiv Detail & Related papers (2023-06-15T15:19:25Z) - Understanding Noise-Augmented Training for Randomized Smoothing [14.061680807550722]
Randomized smoothing is a technique for providing provable robustness guarantees against adversarial attacks.
We show that, without making stronger distributional assumptions, no benefit can be expected from predictors trained with noise-augmentation.
Our analysis has direct implications to the practical deployment of randomized smoothing.
arXiv Detail & Related papers (2023-05-08T14:46:34Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
We use "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input.
Our experiments show that the proposed method consistently exhibits improved certified robustness upon state-of-the-art training methods.
arXiv Detail & Related papers (2022-12-18T03:57:12Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Does Adversarial Oversampling Help us? [10.210871872870737]
We propose a three-player adversarial game-based end-to-end method to handle class imbalance in datasets.
Rather than adversarial minority oversampling, we propose an adversarial oversampling (AO) and a data-space oversampling (DO) approach.
The effectiveness of our proposed method has been validated with high-dimensional, highly imbalanced and large-scale multi-class datasets.
arXiv Detail & Related papers (2021-08-20T05:43:17Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.