論文の概要: TRACE: Temporally Reliable Anatomically-Conditioned 3D CT Generation with Enhanced Efficiency
- arxiv url: http://arxiv.org/abs/2507.00802v1
- Date: Tue, 01 Jul 2025 14:35:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.665442
- Title: TRACE: Temporally Reliable Anatomically-Conditioned 3D CT Generation with Enhanced Efficiency
- Title(参考訳): TRACEによる高能率3次元CT装置の開発
- Authors: Minye Shao, Xingyu Miao, Haoran Duan, Zeyu Wang, Jingkun Chen, Yawen Huang, Xian Wu, Jingjing Deng, Yang Long, Yefeng Zheng,
- Abstract要約: TRACEは、時間的アライメントを備えた3D医療画像を生成するフレームワークである。
重なり合うフレームフレームは、対をフレキシブルな長さシーケンスに分割し、時間的および解剖学的に整列された3Dボリュームに再構成する。
- 参考スコア(独自算出の注目度): 40.82927972746919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D medical image generation is essential for data augmentation and patient privacy, calling for reliable and efficient models suited for clinical practice. However, current methods suffer from limited anatomical fidelity, restricted axial length, and substantial computational cost, placing them beyond reach for regions with limited resources and infrastructure. We introduce TRACE, a framework that generates 3D medical images with spatiotemporal alignment using a 2D multimodal-conditioned diffusion approach. TRACE models sequential 2D slices as video frame pairs, combining segmentation priors and radiology reports for anatomical alignment, incorporating optical flow to sustain temporal coherence. During inference, an overlapping-frame strategy links frame pairs into a flexible length sequence, reconstructed into a spatiotemporally and anatomically aligned 3D volume. Experimental results demonstrate that TRACE effectively balances computational efficiency with preserving anatomical fidelity and spatiotemporal consistency. Code is available at: https://github.com/VinyehShaw/TRACE.
- Abstract(参考訳): データ拡張と患者のプライバシーのためには、3D医療画像生成が不可欠である。
しかし、現在の手法は、限られた解剖学的な忠実さ、制限された軸長、かなりの計算コストに悩まされ、限られた資源とインフラを持つ領域に届かなかった。
TRACEは2次元マルチモーダル共振拡散法を用いて時空間アライメントを伴う3次元医用画像を生成するフレームワークである。
TRACEはシーケンシャルな2Dスライスをビデオフレームペアとしてモデル化し、解剖学的アライメントのためのセグメンテーション先と放射線学のレポートを組み合わせて、時間的コヒーレンスを維持するために光の流れを取り入れた。
重なり合うフレーム戦略は、フレームペアをフレキシブルな長さシーケンスにリンクし、時空間的に解剖学的に整列した3Dボリュームに再構成する。
実験の結果,TRACEは解剖学的忠実度と時空間的一貫性の維持と計算効率のバランスを効果的に保っていることがわかった。
コードは、https://github.com/VinyehShaw/TRACE.comで入手できる。
関連論文リスト
- ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation [11.248082139905865]
アノテーション付きデータとしてMRIシーケンスをモデル化するハイブリッドアーキテクチャを提案する。
本手法では, 深層保存型DeepVLab3バックボーンを用いて, それぞれのMRIスライスから高レベルなセマンティック特徴を抽出し, コンブLSTM層で構築した再帰的畳み込みヘッドを用いて, スライス間の情報統合を行う。
現状の2D, 3Dセグメンテーションモデルと比較して, 精度, リコール, IoU, Dice similarity Coefficient (DSC) およびロバストネスの点で優れた性能を示す。
論文 参考訳(メタデータ) (2025-06-24T14:56:55Z) - Text-to-CT Generation via 3D Latent Diffusion Model with Contrastive Vision-Language Pretraining [0.8714814768600079]
本稿では,3次元コントラッシブな視覚-言語事前学習方式と潜在拡散モデルを組み合わせたテキスト-CT生成のための新しいアーキテクチャを提案する。
本手法は,テキストから臨床的に有意なCTボリュームを合成するための,スケーラブルで制御可能なソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-31T16:41:55Z) - Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
本稿では,2次元CNNにおける3次元特徴をエンコードする2次元モデルSlice SHift UNetを提案する。
より正確にマルチビュー機能は、ボリュームの3次元平面に沿って2次元の畳み込みを実行することで協調的に学習される。
提案手法の有効性は,多モード腹部多臓器軸 (AMOS) と Cranial Vault (BTCV) データセットを越えたマルチアトラスラベリング (Multi-Atlas Labeling Beyond the Cranial Vault) で検証した。
論文 参考訳(メタデータ) (2023-07-24T14:53:23Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
本稿では,空間的および時間的注意を並列に効率的に計算するハイブリッドエンコーダデコーダフレームワークを提案する。
また,ミトコンドリアインスタンスの領域を背景から支援する訓練中に,意味的クラッタ・バックグラウンドの逆行性障害も導入した。
論文 参考訳(メタデータ) (2023-03-21T17:58:49Z) - The entire network structure of Crossmodal Transformer [4.605531191013731]
提案手法はまず2次元X線と3次元CT画像から骨格の特徴を深く学習する。
その結果、よく訓練されたネットワークは任意の2D X線と3D CT間の空間的対応を直接予測することができる。
論文 参考訳(メタデータ) (2021-04-29T11:47:31Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。