論文の概要: ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation
- arxiv url: http://arxiv.org/abs/2506.19687v1
- Date: Tue, 24 Jun 2025 14:56:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.683728
- Title: ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation
- Title(参考訳): ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation
- Authors: Ahmad Mustafa, Reza Rastegar, Ghassan AlRegib,
- Abstract要約: アノテーション付きデータとしてMRIシーケンスをモデル化するハイブリッドアーキテクチャを提案する。
本手法では, 深層保存型DeepVLab3バックボーンを用いて, それぞれのMRIスライスから高レベルなセマンティック特徴を抽出し, コンブLSTM層で構築した再帰的畳み込みヘッドを用いて, スライス間の情報統合を行う。
現状の2D, 3Dセグメンテーションモデルと比較して, 精度, リコール, IoU, Dice similarity Coefficient (DSC) およびロバストネスの点で優れた性能を示す。
- 参考スコア(独自算出の注目度): 11.248082139905865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prostate gland segmentation from T2-weighted MRI is a critical yet challenging task in clinical prostate cancer assessment. While deep learning-based methods have significantly advanced automated segmentation, most conventional approaches-particularly 2D convolutional neural networks (CNNs)-fail to leverage inter-slice anatomical continuity, limiting their accuracy and robustness. Fully 3D models offer improved spatial coherence but require large amounts of annotated data, which is often impractical in clinical settings. To address these limitations, we propose a hybrid architecture that models MRI sequences as spatiotemporal data. Our method uses a deep, pretrained DeepLabV3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices while preserving spatial structure. This combination enables context-aware segmentation with improved consistency, particularly in data-limited and noisy imaging conditions. We evaluate our method on the PROMISE12 benchmark under both clean and contrast-degraded test settings. Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), and Dice Similarity Coefficient (DSC), highlighting its potential for robust clinical deployment.
- Abstract(参考訳): T2強調MRIによる前立腺分節化は臨床前立腺癌評価において重要な課題である。
ディープラーニングベースの手法は、かなり高度な自動セグメンテーションを持つが、従来のアプローチでは、特に2次元畳み込みニューラルネットワーク(CNN)は、スライス間の解剖学的連続性を活用できず、精度と堅牢性を制限している。
完全な3Dモデルは空間コヒーレンスの改善を提供するが、大量の注釈付きデータを必要とする。
これらの制約に対処するために,MRIの時系列を時空間データとしてモデル化するハイブリッドアーキテクチャを提案する。
提案手法では,DeepLabV3バックボーンを用いて,各MRIスライスから高レベルなセマンティック特徴を抽出し,ConvLSTM層で構築した再帰的畳み込みヘッドを用いて,空間構造を保ちながらスライス間の情報を統合する。
この組み合わせにより、特にデータ制限やノイズのある撮像条件において、一貫性を改善したコンテキスト認識のセグメンテーションが可能になる。
クリーンかつコントラスト劣化したテスト設定下で, ProMISE12 ベンチマークを用いて本手法の評価を行った。
現状の2D, 3Dセグメンテーションモデルと比較して, 精度, リコール, IoU, Dice similarity Coefficient (DSC) の面で優れた性能を示し, 堅牢な臨床展開の可能性を強調した。
関連論文リスト
- Unified 3D MRI Representations via Sequence-Invariant Contrastive Learning [0.15749416770494706]
定量的MRI(qMRI)を利用したシーケンス不変な自己教師型フレームワークを提案する。
健常脳セグメンテーション(IXI)、脳梗塞セグメンテーション(ARC)、MRIによるデノイング実験は、ベースラインSSLアプローチよりも有意な増加を示した。
また,本モデルは,よりスケーラブルで臨床的に信頼性の高いボリューム分析の可能性を示した。
論文 参考訳(メタデータ) (2025-01-21T11:27:54Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs [1.5228650878164722]
世界的死亡の主な原因である肝硬変は、効果的な疾患モニタリングと治療計画のためにROIを正確に区分する必要がある。
既存のセグメンテーションモデルは、複雑な機能インタラクションをキャプチャして、さまざまなデータセットをまたいだ一般化に失敗することが多い。
本稿では、補間潜在空間を拡張的特徴相互作用モデリングに活用する新しい相乗論的理論を提案する。
論文 参考訳(メタデータ) (2024-08-08T14:41:32Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
本研究では,3次元画像処理における中間特徴表現を用いた2次元ネットワークの適応手法を提案する。
我々は、ベンチマークとして3D MedMNISTデータセットと、既存の手法に匹敵する数百の高分解能CTまたはMRIスキャンからなる2つの実世界のデータセットを示す。
論文 参考訳(メタデータ) (2023-07-13T08:27:09Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left
Ventricle Delineation from Myocardial Velocity Mapping [1.8653386811342048]
MVM-CMRデータセットのための組み込みマルチチャネルアテンション機構とLSTMベースのリカレントニューラルネットワーク(RNN)を備えた3D-UNETバックボーンアーキテクチャを組み込んだ新しいフルオートマチックフレームワークを提案する。
3D-UNETのベースラインモデルと、組み込み型LSTMモジュールと各種損失関数の有無の比較により、提案モデルが最先端のベースラインモデルより大幅に改善されたことを実証できます。
論文 参考訳(メタデータ) (2021-04-26T11:04:43Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
本稿では,これらの課題に効果的に取り組むために,新しい3Dベースの粗粒度フレームワークを提案する。
提案した3Dベースのフレームワークは、3つの軸すべてに沿ってリッチな空間情報を活用できるため、2Dよりも大きなマージンで優れている。
我々は,3つのデータセット,NIH膵データセット,JHMI膵データセット,JHMI病理嚢胞データセットについて実験を行った。
論文 参考訳(メタデータ) (2020-10-29T15:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。