Stylometry recognizes human and LLM-generated texts in short samples
- URL: http://arxiv.org/abs/2507.00838v2
- Date: Tue, 15 Jul 2025 11:31:45 GMT
- Title: Stylometry recognizes human and LLM-generated texts in short samples
- Authors: Karol Przystalski, Jan K. Argasiński, Iwona Grabska-Gradzińska, Jeremi K. Ochab,
- Abstract summary: The paper explores stylometry as a method to distinguish between texts created by Large Language Models (LLMs) and humans.<n>It addresses issues of model attribution, intellectual property, and ethical AI use.
- Score: 0.562479170374811
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The paper explores stylometry as a method to distinguish between texts created by Large Language Models (LLMs) and humans, addressing issues of model attribution, intellectual property, and ethical AI use. Stylometry has been used extensively to characterise the style and attribute authorship of texts. By applying it to LLM-generated texts, we identify their emergent writing patterns. The paper involves creating a benchmark dataset based on Wikipedia, with (a) human-written term summaries, (b) texts generated purely by LLMs (GPT-3.5/4, LLaMa 2/3, Orca, and Falcon), (c) processed through multiple text summarisation methods (T5, BART, Gensim, and Sumy), and (d) rephrasing methods (Dipper, T5). The 10-sentence long texts were classified by tree-based models (decision trees and LightGBM) using human-designed (StyloMetrix) and n-gram-based (our own pipeline) stylometric features that encode lexical, grammatical, syntactic, and punctuation patterns. The cross-validated results reached a performance of up to .87 Matthews correlation coefficient in the multiclass scenario with 7 classes, and accuracy between .79 and 1. in binary classification, with the particular example of Wikipedia and GPT-4 reaching up to .98 accuracy on a balanced dataset. Shapley Additive Explanations pinpointed features characteristic of the encyclopaedic text type, individual overused words, as well as a greater grammatical standardisation of LLMs with respect to human-written texts. These results show -- crucially, in the context of the increasingly sophisticated LLMs -- that it is possible to distinguish machine- from human-generated texts at least for a well-defined text type.
Related papers
- Linguistic and Embedding-Based Profiling of Texts generated by Humans and Large Language Models [0.0]
We calculate different linguistic features such as dependency length and emotionality for characterizing human-written and machine-generated texts.<n>Our statistical analysis reveals that human-written texts tend to exhibit simpler syntactic structures and more diverse semantic content.<n>Both human and machine texts show stylistic diversity across domains, with humans displaying greater variation in our features.
arXiv Detail & Related papers (2025-07-18T02:46:55Z) - Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)<n>We find that fine-tuning text embedding models on LLM-generated texts yields excellent classification accuracy.<n>We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.<n>We introduce novel methodologies and datasets to overcome these challenges.<n>We propose MhBART, an encoder-decoder model designed to emulate human writing style.<n>We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - Human Variability vs. Machine Consistency: A Linguistic Analysis of Texts Generated by Humans and Large Language Models [0.0]
We identify significant differences between human-written texts and those generated by large language models (LLMs)<n>Our findings indicate that humans write texts that are less cognitively demanding, with higher semantic content, and richer emotional content compared to texts generated by LLMs.
arXiv Detail & Related papers (2024-12-04T04:38:35Z) - LLM-based feature generation from text for interpretable machine learning [0.0]
Existing text representations such as embeddings and bag-of-words are not suitable for rule learning due to their high dimensionality and absent or questionable feature-level interpretability.
This article explores whether large language models (LLMs) could address this by extracting a small number of interpretable features from text.
arXiv Detail & Related papers (2024-09-11T09:29:28Z) - Detection and Measurement of Syntactic Templates in Generated Text [58.111650675717414]
We offer an analysis of syntactic features to characterize general repetition in models.
We find that models tend to produce templated text in downstream tasks at a higher rate than what is found in human-reference texts.
arXiv Detail & Related papers (2024-06-28T19:34:23Z) - Threads of Subtlety: Detecting Machine-Generated Texts Through Discourse Motifs [19.073560504913356]
The line between human-crafted and machine-generated texts has become increasingly blurred.
This paper delves into the inquiry of identifying discernible and unique linguistic properties in texts that were written by humans.
arXiv Detail & Related papers (2024-02-16T11:20:30Z) - TOPFORMER: Topology-Aware Authorship Attribution of Deepfake Texts with Diverse Writing Styles [14.205559299967423]
Recent advances in Large Language Models (LLMs) have enabled the generation of open-ended high-quality texts, that are non-trivial to distinguish from human-written texts.
Users with malicious intent can easily use these open-sourced LLMs to generate harmful texts and dis/misinformation at scale.
To mitigate this problem, a computational method to determine if a given text is a deepfake text or not is desired.
We propose TopFormer to improve existing AA solutions by capturing more linguistic patterns in deepfake texts.
arXiv Detail & Related papers (2023-09-22T15:32:49Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - DPIC: Decoupling Prompt and Intrinsic Characteristics for LLM Generated Text Detection [56.513637720967566]
Large language models (LLMs) can generate texts that pose risks of misuse, such as plagiarism, planting fake reviews on e-commerce platforms, or creating inflammatory false tweets.
Existing high-quality detection methods usually require access to the interior of the model to extract the intrinsic characteristics.
We propose to extract deep intrinsic characteristics of the black-box model generated texts.
arXiv Detail & Related papers (2023-05-21T17:26:16Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
A text entails a hypothesis if and only if the true value of the hypothesis follows the text.
In this paper, we propose a novel approach to identifying the textual entailment relationship between text and hypothesis.
We employ an element-wise Manhattan distance vector-based feature that can identify the semantic entailment relationship between the text-hypothesis pair.
arXiv Detail & Related papers (2022-10-18T10:03:51Z) - A Benchmark Corpus for the Detection of Automatically Generated Text in
Academic Publications [0.02578242050187029]
This paper presents two datasets comprised of artificially generated research content.
In the first case, the content is completely generated by the GPT-2 model after a short prompt extracted from original papers.
The partial or hybrid dataset is created by replacing several sentences of abstracts with sentences that are generated by the Arxiv-NLP model.
We evaluate the quality of the datasets comparing the generated texts to aligned original texts using fluency metrics such as BLEU and ROUGE.
arXiv Detail & Related papers (2022-02-04T08:16:56Z) - How much do language models copy from their training data? Evaluating
linguistic novelty in text generation using RAVEN [63.79300884115027]
Current language models can generate high-quality text.
Are they simply copying text they have seen before, or have they learned generalizable linguistic abstractions?
We introduce RAVEN, a suite of analyses for assessing the novelty of generated text.
arXiv Detail & Related papers (2021-11-18T04:07:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.