Is Visual in-Context Learning for Compositional Medical Tasks within Reach?
- URL: http://arxiv.org/abs/2507.00868v2
- Date: Wed, 02 Jul 2025 09:16:31 GMT
- Title: Is Visual in-Context Learning for Compositional Medical Tasks within Reach?
- Authors: Simon Reiß, Zdravko Marinov, Alexander Jaus, Constantin Seibold, M. Saquib Sarfraz, Erik Rodner, Rainer Stiefelhagen,
- Abstract summary: In this paper, we explore the potential of visual in-context learning to enable a single model to handle multiple tasks.<n>We introduce a novel method for training in-context learners using a synthetic compositional task generation engine.
- Score: 68.56630652862293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the potential of visual in-context learning to enable a single model to handle multiple tasks and adapt to new tasks during test time without re-training. Unlike previous approaches, our focus is on training in-context learners to adapt to sequences of tasks, rather than individual tasks. Our goal is to solve complex tasks that involve multiple intermediate steps using a single model, allowing users to define entire vision pipelines flexibly at test time. To achieve this, we first examine the properties and limitations of visual in-context learning architectures, with a particular focus on the role of codebooks. We then introduce a novel method for training in-context learners using a synthetic compositional task generation engine. This engine bootstraps task sequences from arbitrary segmentation datasets, enabling the training of visual in-context learners for compositional tasks. Additionally, we investigate different masking-based training objectives to gather insights into how to train models better for solving complex, compositional tasks. Our exploration not only provides important insights especially for multi-modal medical task sequences but also highlights challenges that need to be addressed.
Related papers
- In-context Learning in Presence of Spurious Correlations [8.055478206164105]
We study the possibility of training an in-context learner for classification tasks involving spurious features.
We find that the conventional approach of training in-context learners is susceptible to spurious features.
We propose a novel technique to train such a learner for a given classification task.
arXiv Detail & Related papers (2024-10-04T04:26:36Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
Pre-trained language models (LMs) have shown effectiveness in scientific literature understanding tasks.
We propose a multi-task contrastive learning framework, SciMult, to facilitate common knowledge sharing across different literature understanding tasks.
arXiv Detail & Related papers (2023-05-23T16:47:22Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - Prompt Tuning with Soft Context Sharing for Vision-Language Models [42.61889428498378]
We propose a novel method to tune pre-trained vision-language models on multiple target few-shot tasks jointly.
We show that SoftCPT significantly outperforms single-task prompt tuning methods.
arXiv Detail & Related papers (2022-08-29T10:19:10Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Answer-Me: Multi-Task Open-Vocabulary Visual Question Answering [43.07139534653485]
We present Answer-Me, a task-aware multi-task framework.
We pre-train a vision-language joint model, which is multi-task as well.
Results show state-of-the-art performance, zero-shot generalization, robustness to forgetting, and competitive single-task results.
arXiv Detail & Related papers (2022-05-02T14:53:13Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.