Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact
- URL: http://arxiv.org/abs/2507.00951v3
- Date: Sat, 12 Jul 2025 02:50:17 GMT
- Title: Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact
- Authors: Rizwan Qureshi, Ranjan Sapkota, Abbas Shah, Amgad Muneer, Anas Zafar, Ashmal Vayani, Maged Shoman, Abdelrahman B. M. Eldaly, Kai Zhang, Ferhat Sadak, Shaina Raza, Xinqi Fan, Ravid Shwartz-Ziv, Hong Yan, Vinjia Jain, Aman Chadha, Manoj Karkee, Jia Wu, Seyedali Mirjalili,
- Abstract summary: This paper offers a cross-disciplinary synthesis of artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems.<n>We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination.<n>We identify key scientific, technical, and ethical challenges on the path to Artificial General Intelligence.
- Score: 27.722167796617114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can machines truly think, reason and act in domains like humans? This enduring question continues to shape the pursuit of Artificial General Intelligence (AGI). Despite the growing capabilities of models such as GPT-4.5, DeepSeek, Claude 3.5 Sonnet, Phi-4, and Grok 3, which exhibit multimodal fluency and partial reasoning, these systems remain fundamentally limited by their reliance on token-level prediction and lack of grounded agency. This paper offers a cross-disciplinary synthesis of AGI development, spanning artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems. We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination. In particular, we emphasize the rise of Agentic RAG frameworks that combine retrieval, planning, and dynamic tool use to enable more adaptive behavior. We discuss generalization strategies, including information compression, test-time adaptation, and training-free methods, as critical pathways toward flexible, domain-agnostic intelligence. Vision-Language Models (VLMs) are reexamined not just as perception modules but as evolving interfaces for embodied understanding and collaborative task completion. We also argue that true intelligence arises not from scale alone but from the integration of memory and reasoning: an orchestration of modular, interactive, and self-improving components where compression enables adaptive behavior. Drawing on advances in neurosymbolic systems, reinforcement learning, and cognitive scaffolding, we explore how recent architectures begin to bridge the gap between statistical learning and goal-directed cognition. Finally, we identify key scientific, technical, and ethical challenges on the path to AGI.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - Nature's Insight: A Novel Framework and Comprehensive Analysis of Agentic Reasoning Through the Lens of Neuroscience [11.174550573411008]
We propose a novel neuroscience-inspired framework for agentic reasoning.<n>We apply this framework to systematically classify and analyze existing AI reasoning methods.<n>We propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting.
arXiv Detail & Related papers (2025-05-07T14:25:46Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
This paper considers an evolutionary approach to creating a cognitive functionality.
We consider a cognitive architecture which ensures the evolution of the agent on the basis of Symbol Emergence Problem solution.
arXiv Detail & Related papers (2022-07-02T12:41:32Z) - A Metamodel and Framework for AGI [3.198144010381572]
We introduce the Deep Fusion Reasoning Engine (DFRE), which implements a knowledge-preserving metamodel and framework for constructing applied AGI systems.
DFRE exhibits some important fundamental knowledge properties such as clear distinctions between symmetric and antisymmetric relations.
Our experiments show that the proposed framework achieves 94% accuracy on average on unsupervised object detection and recognition.
arXiv Detail & Related papers (2020-08-28T23:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.