A Metamodel and Framework for AGI
- URL: http://arxiv.org/abs/2008.12879v2
- Date: Sun, 6 Sep 2020 23:36:32 GMT
- Title: A Metamodel and Framework for AGI
- Authors: Hugo Latapie and Ozkan Kilic
- Abstract summary: We introduce the Deep Fusion Reasoning Engine (DFRE), which implements a knowledge-preserving metamodel and framework for constructing applied AGI systems.
DFRE exhibits some important fundamental knowledge properties such as clear distinctions between symmetric and antisymmetric relations.
Our experiments show that the proposed framework achieves 94% accuracy on average on unsupervised object detection and recognition.
- Score: 3.198144010381572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can artificial intelligence systems exhibit superhuman performance, but in
critical ways, lack the intelligence of even a single-celled organism? The
answer is clearly 'yes' for narrow AI systems. Animals, plants, and even
single-celled organisms learn to reliably avoid danger and move towards food.
This is accomplished via a physical knowledge preserving metamodel that
autonomously generates useful models of the world. We posit that preserving the
structure of knowledge is critical for higher intelligences that manage
increasingly higher levels of abstraction, be they human or artificial. This is
the key lesson learned from applying AGI subsystems to complex real-world
problems that require continuous learning and adaptation. In this paper, we
introduce the Deep Fusion Reasoning Engine (DFRE), which implements a
knowledge-preserving metamodel and framework for constructing applied AGI
systems. The DFRE metamodel exhibits some important fundamental knowledge
preserving properties such as clear distinctions between symmetric and
antisymmetric relations, and the ability to create a hierarchical knowledge
representation that clearly delineates between levels of abstraction. The DFRE
metamodel, which incorporates these capabilities, demonstrates how this
approach benefits AGI in specific ways such as managing combinatorial explosion
and enabling cumulative, distributed and federated learning. Our experiments
show that the proposed framework achieves 94% accuracy on average on
unsupervised object detection and recognition. This work is inspired by the
state-of-the-art approaches to AGI, recent AGI-aspiring work, the granular
computing community, as well as Alfred Korzybski's general semantics.
Related papers
- Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
An artificial general intelligence (AGI) has been an elusive goal in artificial intelligence (AI) research for some time.
An AGI would have the capability, like a human, to be exposed to a new problem domain, learn about it and then use reasoning processes to make decisions.
This paper presents a small step towards producing an AGI.
arXiv Detail & Related papers (2024-06-17T07:21:44Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - Conceptual Modeling and Artificial Intelligence: Mutual Benefits from
Complementary Worlds [0.0]
We are interested in tackling the intersection of the two, thus far, mostly isolated approached disciplines of CM and AI.
The workshop embraces the assumption, that manifold mutual benefits can be realized by i) investigating what Conceptual Modeling (CM) can contribute to AI, and ii) the other way around.
arXiv Detail & Related papers (2021-10-16T18:42:09Z) - A Metamodel and Framework for Artificial General Intelligence From
Theory to Practice [11.756425327193426]
This paper introduces a new metamodel-based knowledge representation that significantly improves autonomous learning and adaptation.
We have applied the metamodel to problems ranging from time series analysis, computer vision, and natural language understanding.
One surprising consequence of the metamodel is that it not only enables a new level of autonomous learning and optimal functioning for machine intelligences.
arXiv Detail & Related papers (2021-02-11T16:45:58Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
This article presents a new methodology, AI from concrete to abstract (AIcon2abs)
The main strategy adopted by is to promote a demystification of artificial intelligence.
The simplicity of the WiSARD weightless artificial neural network model enables easy visualization and understanding of training and classification tasks.
arXiv Detail & Related papers (2020-06-07T01:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.