論文の概要: Advancing Lung Disease Diagnosis in 3D CT Scans
- arxiv url: http://arxiv.org/abs/2507.00993v1
- Date: Tue, 01 Jul 2025 17:44:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.765853
- Title: Advancing Lung Disease Diagnosis in 3D CT Scans
- Title(参考訳): 3次元CTにおける肺疾患診断の進歩
- Authors: Qingqiu Li, Runtian Yuan, Junlin Hou, Jilan Xu, Yuejie Zhang, Rui Feng, Hao Chen,
- Abstract要約: 我々は3次元CTスキャンの特徴を分析し,非肺領域を除去し,病変関連領域に焦点をあてることを支援する。
本モデルでは,Fair Disease Diagnosis Challengeの検証セットにおいて,マクロF1スコアの0.80を達成している。
- 参考スコア(独自算出の注目度): 19.844531606142496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enable more accurate diagnosis of lung disease in chest CT scans, we propose a straightforward yet effective model. Firstly, we analyze the characteristics of 3D CT scans and remove non-lung regions, which helps the model focus on lesion-related areas and reduces computational cost. We adopt ResNeSt50 as a strong feature extractor, and use a weighted cross-entropy loss to mitigate class imbalance, especially for the underrepresented squamous cell carcinoma category. Our model achieves a Macro F1 Score of 0.80 on the validation set of the Fair Disease Diagnosis Challenge, demonstrating its strong performance in distinguishing between different lung conditions.
- Abstract(参考訳): 胸部CTにおける肺疾患のより正確な診断を可能にするため,単純で効果的なモデルを提案する。
まず,3次元CTスキャンの特徴を分析し,非肺領域を除去し,病変関連領域に焦点をあてることと計算コストの低減を図る。
我々はResNeSt50を強力な特徴抽出器として採用し、特に低発現扁平上皮癌において、クラス不均衡を軽減するために重み付きクロスエントロピー損失を用いる。
本モデルでは,Fair Disease Diagnosis Challengeの検証セットにおいて,0.80のマクロF1スコアを達成し,異なる肺状態の区別において高い性能を示した。
関連論文リスト
- High-Fidelity 3D Lung CT Synthesis in ARDS Swine Models Using Score-Based 3D Residual Diffusion Models [13.79974752491887]
急性呼吸不全症候群(ARDS)は、肺炎症と呼吸不全を特徴とする重症疾患であり、死亡率は約40%である。
胸部X線のような従来の画像撮影法は、肺病理の完全な評価において、その効果を制限し、2次元のビューのみを提供する。
本研究では, スコアベース3D残差拡散モデルを用いて2次元X線画像から高忠実度3D肺CTを合成する。
論文 参考訳(メタデータ) (2024-09-26T18:22:34Z) - Variational Autoencoders for Feature Exploration and Malignancy
Prediction of Lung Lesions [0.0]
肺がんはイギリスで21%のがん死の原因となっている。
最近の研究は、定期的なスキャンから肺がんの正確な早期診断のためのAI手法の能力を実証している。
本研究では, 変異型オートエンコーダ(VAE)の肺癌病変に対する応用について検討した。
論文 参考訳(メタデータ) (2023-11-27T11:12:33Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
本稿では、畳み込みニューラルネットワークと視覚変換器の長所を利用する革新的なモデルを提案する。
ビデオ中の物体検出にインスパイアされた各3次元CT画像をビデオとして扱い、個々のスライスをフレームとして、肺結節をオブジェクトとして扱い、時系列アプリケーションを可能にする。
論文 参考訳(メタデータ) (2023-10-05T07:48:55Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
患者固有の沈着モデリングのための自動計算フレームワークを開発し,検証することを目的としている。
2次元胸部X線と3次元CT画像から3次元患者の呼吸動態を生成できる画像処理手法が提案されている。
論文 参考訳(メタデータ) (2023-03-02T07:47:07Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
胸部X線(CXR)に対する胸部骨陰影の抑制は肺疾患の診断を改善することが示唆された。
従来のアプローチは、教師なしの物理的および教師なしのディープラーニングモデルに分類される。
本研究では,(1)空間変換勾配場における物理モデルによる最小化によりGT骨影を除去した2段階のトレーニングペアの生成について,一般化可能かつ効率的なワークフローを提案する。
2) 受信したCXRの高速リブ除去のために,ステージ1データセット上でのネットワークトレーニングをフル教師する。
論文 参考訳(メタデータ) (2023-02-19T23:47:02Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
肺線維症は、回復不能な肺組織スカーリングおよび損傷を引き起こす慢性肺疾患であり、肺容量の進行的減少と既知の治療法がない。
胸部CT画像からの肺線維化進展の予測に適した深部畳み込みニューラルネットワークであるFibrosis-Netを導入する。
論文 参考訳(メタデータ) (2021-03-06T02:16:41Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Lung Infection Quantification of COVID-19 in CT Images with Deep
Learning [41.35413216175024]
深層学習システムは、関心のある感染症領域を自動的に定量化するために開発された。
感染領域分割のための放射線科医を支援するためのループ内ヒト戦略
論文 参考訳(メタデータ) (2020-03-10T11:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。