論文の概要: SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
- arxiv url: http://arxiv.org/abs/2507.01001v1
- Date: Tue, 01 Jul 2025 17:51:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.770439
- Title: SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
- Title(参考訳): SciArena: 科学論文における基礎モデルのオープンな評価プラットフォーム
- Authors: Yilun Zhao, Kaiyan Zhang, Tiansheng Hu, Sihong Wu, Ronan Le Bras, Taira Anderson, Jonathan Bragg, Joseph Chee Chang, Jesse Dodge, Matt Latzke, Yixin Liu, Charles McGrady, Xiangru Tang, Zihang Wang, Chen Zhao, Hannaneh Hajishirzi, Doug Downey, Arman Cohan,
- Abstract要約: 我々は,学術文献タスクの基礎モデルを評価するための,オープンで協調的なプラットフォームであるSciArenaを紹介する。
集合的知性を活用することで、SciArenaはコミュニティ主導の、オープンな科学的タスクにおけるモデルパフォーマンスの評価を提供する。
収集した嗜好データに基づいたメタ評価ベンチマークであるSciArena-Evalをリリースする。
- 参考スコア(独自算出の注目度): 87.29946641069068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
- Abstract(参考訳): 我々は,学術文献タスクの基礎モデルを評価するための,オープンで協調的なプラットフォームであるSciArenaを紹介する。
科学文献の理解と合成のための従来のベンチマークとは異なり、SciArenaはChatbot Arenaの評価アプローチに従い、研究コミュニティに直接関与している。
集合的知性を活用することで、SciArenaはコミュニティ主導の、文学的な長文の応答を要求するオープンエンドな科学的タスクにおけるモデルパフォーマンスの評価を提供する。
プラットフォームは現在、23のオープンソースおよびプロプライエタリなファンデーションモデルをサポートしており、さまざまな科学分野の信頼できる研究者から13,000以上の投票を集めている。
これまでに収集したデータを分析し,提案した質問が多様であり,現実の文献のニーズに合致していること,参加研究者が評価において強い自己整合性およびアノテータ間合意を示すことを確認した。
モデルランキングのリーダーボードに基づいて、結果と洞察について論じる。
文献タスクのためのモデルに基づく自動評価システム構築の研究をさらに促進するため,我々は,収集した嗜好データに基づくメタ評価ベンチマークであるSciArena-Evalをリリースした。
このベンチマークは、回答の質を判断する際のモデルの精度を、彼らのペアワイズ評価と人間の投票を比較して測定する。
実験では、ベンチマークの課題を強調し、より信頼性の高い自動評価方法の必要性を強調した。
関連論文リスト
- Grounding Synthetic Data Evaluations of Language Models in Unsupervised Document Corpora [9.871701356351542]
言語モデル(LM)は進化を続け、応答品質と一貫性を改善している。
モデル品質、応答適性、推論能力を評価するために、数多くの評価ベンチマークが作成されている。
本稿では,文書群を基盤としたファクトベース合成データモデル評価の自動化手法を提案する。
論文 参考訳(メタデータ) (2025-05-13T18:50:03Z) - Bridging the Evaluation Gap: Leveraging Large Language Models for Topic Model Evaluation [0.0]
本研究では,Large Language Models (LLMs) を用いた科学文献における動的に進化するトピックの自動評価のための枠組みを提案する。
提案手法は,専門家のアノテータや狭義の統計指標に大きく依存することなく,コヒーレンス,反復性,多様性,トピック文書のアライメントといった重要な品質次元を測定するためにLLMを利用する。
論文 参考訳(メタデータ) (2025-02-11T08:23:56Z) - IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変革した。
包括的データセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-10-31T17:04:59Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - Benchmarking Foundation Models with Language-Model-as-an-Examiner [47.345760054595246]
本稿では,新しいベンチマークフレームワークLanguage-Model-as-an-Examinerを提案する。
LMは、その知識に基づいて質問を定式化し、基準のない方法で応答を評価する、知識に富んだ検査者として機能する。
論文 参考訳(メタデータ) (2023-06-07T06:29:58Z) - Investigating Crowdsourcing Protocols for Evaluating the Factual
Consistency of Summaries [59.27273928454995]
要約に適用される現在の事前学習モデルは、ソーステキストを誤って表現したり、外部情報を導入したりする事実上の矛盾がちである。
評価ベースのLikertスケールとランキングベースのBest-Worst Scalingプロトコルを用いた,事実整合性のためのクラウドソーシング評価フレームワークを構築した。
ランキングベースのプロトコルは、データセット間の要約品質をより信頼性の高い尺度を提供するのに対して、Likertレーティングの信頼性はターゲットデータセットと評価設計に依存する。
論文 参考訳(メタデータ) (2021-09-19T19:05:00Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
モデル逆算評価スキームと関連するメトリクスを用いて、現状のAESモデルを評価する。
AESモデルは非常に過大評価されていることがわかった。質問の話題に関係のない内容の重い修正(25%まで)でさえ、モデルが生み出すスコアを低下させることはない。
論文 参考訳(メタデータ) (2020-07-14T03:49:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。