論文の概要: IdeaBench: Benchmarking Large Language Models for Research Idea Generation
- arxiv url: http://arxiv.org/abs/2411.02429v1
- Date: Thu, 31 Oct 2024 17:04:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:10.414391
- Title: IdeaBench: Benchmarking Large Language Models for Research Idea Generation
- Title(参考訳): IdeaBench: 研究アイデア生成のための大規模言語モデルのベンチマーク
- Authors: Sikun Guo, Amir Hassan Shariatmadari, Guangzhi Xiong, Albert Huang, Eric Xie, Stefan Bekiranov, Aidong Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変革した。
包括的データセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライズを可能にする。
- 参考スコア(独自算出の注目度): 19.66218274796796
- License:
- Abstract: Large Language Models (LLMs) have transformed how people interact with artificial intelligence (AI) systems, achieving state-of-the-art results in various tasks, including scientific discovery and hypothesis generation. However, the lack of a comprehensive and systematic evaluation framework for generating research ideas using LLMs poses a significant obstacle to understanding and assessing their generative capabilities in scientific discovery. To address this gap, we propose IdeaBench, a benchmark system that includes a comprehensive dataset and an evaluation framework for standardizing the assessment of research idea generation using LLMs. Our dataset comprises titles and abstracts from a diverse range of influential papers, along with their referenced works. To emulate the human process of generating research ideas, we profile LLMs as domain-specific researchers and ground them in the same context considered by human researchers. This maximizes the utilization of the LLMs' parametric knowledge to dynamically generate new research ideas. We also introduce an evaluation framework for assessing the quality of generated research ideas. Our evaluation framework is a two-stage process: first, using GPT-4o to rank ideas based on user-specified quality indicators such as novelty and feasibility, enabling scalable personalization; and second, calculating relative ranking based "Insight Score" to quantify the chosen quality indicator. The proposed benchmark system will be a valuable asset for the community to measure and compare different LLMs, ultimately advancing the automation of the scientific discovery process.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変え、科学的な発見や仮説生成を含む様々なタスクで最先端の結果を達成する。
しかし、LLMを用いた研究アイデアを生成するための包括的かつ体系的な評価フレームワークが欠如していることは、科学的発見におけるそれらの生成能力を理解し評価する上で大きな障害となる。
このギャップに対処するために,LLMを用いた研究アイデア生成の評価を標準化するための総合的なデータセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
研究アイデアを創出する人間の過程をエミュレートするため,LLMをドメイン固有の研究者としてプロファイルし,人間研究者が考慮した同じ文脈で基礎づける。
これはLLMのパラメトリック知識の利用を最大化し、新しい研究アイデアを動的に生成する。
生成した研究アイデアの質を評価するための評価フレームワークも導入する。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライゼーションを可能にし、次に、選択した品質指標を定量化するために、相対的なランキングベースの"Insight Score"を計算する。
提案されたベンチマークシステムは、様々なLSMを計測し比較する上で、コミュニティにとって貴重な資産であり、最終的には科学的な発見プロセスの自動化を推進します。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
先進的な生成AIを駆使した大規模言語モデル(LLM)がトランスフォーメーションツールとして登場した。
本研究は, LLMを用いた定性的研究に関する文献を体系的にマッピングする。
LLMは様々な分野にまたがって利用されており、プロセスの自動化の可能性を示している。
論文 参考訳(メタデータ) (2024-11-18T21:28:00Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
大型言語モデル(LLM)は、科学的な発見を加速する可能性についての楽観主義を喚起した。
LLMシステムは、新しい専門家レベルのアイデアを生み出すための第一歩を踏み出すことができるという評価はない。
論文 参考訳(メタデータ) (2024-09-06T08:25:03Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
我々は、23の最先端のLarge Language Models (LLMs)ベンチマークを批判的に評価する。
私たちの研究は、バイアス、真の推論、適応性、実装の不整合、エンジニアリングの複雑さ、多様性、文化的およびイデオロギー規範の見落としなど、重大な制限を明らかにしました。
論文 参考訳(メタデータ) (2024-02-15T11:08:10Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。