Cohort Retrieval using Dense Passage Retrieval
- URL: http://arxiv.org/abs/2507.01049v1
- Date: Thu, 26 Jun 2025 18:11:25 GMT
- Title: Cohort Retrieval using Dense Passage Retrieval
- Authors: Pranav Jadhav,
- Abstract summary: We propose a systematic approach to transform an echocardiographic EHR dataset of unstructured nature into a Query-Passage dataset.<n>We design and implement evaluation metrics inspired by real-world clinical scenarios to rigorously test the models.<n>We present a custom-trained DPR embedding model that demonstrates superior performance compared to traditional and off-the-shelf SOTA methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Patient cohort retrieval is a pivotal task in medical research and clinical practice, enabling the identification of specific patient groups from extensive electronic health records (EHRs). In this work, we address the challenge of cohort retrieval in the echocardiography domain by applying Dense Passage Retrieval (DPR), a prominent methodology in semantic search. We propose a systematic approach to transform an echocardiographic EHR dataset of unstructured nature into a Query-Passage dataset, framing the problem as a Cohort Retrieval task. Additionally, we design and implement evaluation metrics inspired by real-world clinical scenarios to rigorously test the models across diverse retrieval tasks. Furthermore, we present a custom-trained DPR embedding model that demonstrates superior performance compared to traditional and off-the-shelf SOTA methods.To our knowledge, this is the first work to apply DPR for patient cohort retrieval in the echocardiography domain, establishing a framework that can be adapted to other medical domains.
Related papers
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - ACR: A Benchmark for Automatic Cohort Retrieval [1.3547712404175771]
Current cohort retrieval methods rely on automated queries of structured data combined with manual curation.
Recent advancements in large language models (LLMs) and information retrieval (IR) offer promising avenues to revolutionize these systems.
This paper introduces a new task, Automatic Cohort Retrieval (ACR), and evaluates the performance of LLMs and commercial, domain-specific neuro-symbolic approaches.
arXiv Detail & Related papers (2024-06-20T23:04:06Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks [0.0]
In clinical practice, the assignment of captured ECG recordings to incorrect patients can occur inadvertently.
We propose a small and efficient neural-network based model for determining whether two ECGs originate from the same patient.
Our model achieves state-of-the-art performance in gallery-probe patient identification on PTB-XL while utilizing 760x fewer parameters.
arXiv Detail & Related papers (2023-06-09T18:53:25Z) - Toward Cohort Intelligence: A Universal Cohort Representation Learning
Framework for Electronic Health Record Analysis [15.137213823470544]
We propose a universal COhort Representation lEarning (CORE) framework to augment EHR utilization by leveraging the fine-grained cohort information among patients.
CORE is readily applicable to diverse backbone models, serving as a universal plug-in framework to infuse cohort information into healthcare methods for boosted performance.
arXiv Detail & Related papers (2023-04-10T09:12:37Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Patient Cohort Retrieval using Transformer Language Models [7.784753717089568]
We propose a framework for retrieving patient cohorts using neural language models without the need of explicit feature engineering and domain expertise.
We find that a majority of our models outperform the BM25 baseline method on various evaluation metrics.
arXiv Detail & Related papers (2020-09-10T19:40:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.