Evaluating Pavement Deterioration Rates Due to Flooding Events Using Explainable AI
- URL: http://arxiv.org/abs/2507.01056v1
- Date: Sat, 28 Jun 2025 04:13:53 GMT
- Title: Evaluating Pavement Deterioration Rates Due to Flooding Events Using Explainable AI
- Authors: Lidan Peng, Lu Gao, Feng Hong, Jingran Sun,
- Abstract summary: This research investigates how flooding events affect pavement deterioration, specifically focusing on measuring pavement roughness by the International Roughness Index (IRI)<n>To quantify these effects, we utilized 20 years of pavement condition data from TxDOT's PMIS database, which is integrated with flood event data, including duration and spatial extent.<n>Results demonstrate that flood-affected pavements experience a more rapid increase in roughness compared to non-flooded sections.
- Score: 1.269327994479157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flooding can damage pavement infrastructure significantly, causing both immediate and long-term structural and functional issues. This research investigates how flooding events affect pavement deterioration, specifically focusing on measuring pavement roughness by the International Roughness Index (IRI). To quantify these effects, we utilized 20 years of pavement condition data from TxDOT's PMIS database, which is integrated with flood event data, including duration and spatial extent. Statistical analyses were performed to compare IRI values before and after flooding and to calculate the deterioration rates influenced by flood exposure. Moreover, we applied Explainable Artificial Intelligence (XAI) techniques, such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), to assess the impact of flooding on pavement performance. The results demonstrate that flood-affected pavements experience a more rapid increase in roughness compared to non-flooded sections. These findings emphasize the need for proactive flood mitigation strategies, including improved drainage systems, flood-resistant materials, and preventative maintenance, to enhance pavement resilience in vulnerable regions.
Related papers
- A Spatiotemporal Radar-Based Precipitation Model for Water Level Prediction and Flood Forecasting [0.9487148673655145]
In July 2017, the cities of Goslar and G"ottingen experienced severe flood events characterized by short warning time of only 20 minutes.<n>This highlights the critical need for a more reliable and timely flood forecasting system.
arXiv Detail & Related papers (2025-03-25T10:14:54Z) - SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
Climate and increasing droughts pose significant challenges to water resource management around the world.
We present a new dataset, SEN12-WATER, along with a benchmark using a end-to-end Deep Learning framework for proactive drought-related analysis.
arXiv Detail & Related papers (2024-09-25T16:50:59Z) - The Power of Explainability in Forecast-Informed Deep Learning Models
for Flood Mitigation [0.0]
We propose FIDLAR, a Forecast Informed Deep Learning Architecture, to achieve flood management in watersheds with hydraulic structures.
Results show FIDLAR performs better than the current state-of-the-art with several orders of magnitude speedup.
The main contribution of this paper is the effective use of tools for model explainability, allowing us to understand the contribution of the various environmental factors towards its decisions.
arXiv Detail & Related papers (2023-10-29T21:56:22Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Quantitative Assessment of Drought Impacts Using XGBoost based on the
Drought Impact Reporter [0.0]
Under climate change, the increasing frequency, intensity, and spatial extent of drought events lead to higher socio-economic costs.
We propose a framework based on the extreme gradient model (XGBoost) for Texas to predict multi-category drought impacts.
arXiv Detail & Related papers (2022-11-04T22:16:13Z) - Transformer-based Flood Scene Segmentation for Developing Countries [1.7499351967216341]
Floods are large-scale natural disasters that often induce a massive number of deaths, extensive material damage, and economic turmoil.
Early Warning Systems (EWS) constantly assess water levels and other factors to forecast floods, to help minimize damage.
FloodTransformer is the first visual transformer-based model to detect and segment flooded areas from aerial images at disaster sites.
arXiv Detail & Related papers (2022-10-09T10:29:41Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Predicting Road Flooding Risk with Machine Learning Approaches Using
Crowdsourced Reports and Fine-grained Traffic Data [1.0554048699217669]
The objective of this study is to predict road flooding risks based on topographic, hydrologic, and temporal precipitation features using machine learning models.
The findings from Hurricane Harvey indicate that precipitation is the most important feature for predicting road inundation susceptibility.
This study advances the emerging field of smart flood resilience in terms of predictive flood risk mapping at the road level.
arXiv Detail & Related papers (2021-08-30T14:25:58Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.